Prebiotic alone or combined with probiotic has a positive effect on organic matter digestibility, performance, immune and antioxidant response of calves after weaning

Authors

DOI:

https://doi.org/10.33448/rsd-v11i10.31415

Keywords:

Prebiotic; Probiotic; Symbiotic; Dairy calves.

Abstract

The aim of this study was to evaluate whether the addition of a combination of probiotics (PROB) and prebiotics (PREB) or both alone in the diet of Holstein calves after lactation has a positive effect on the immune and antioxidant response capable of favoring the animal's growth. Eighteen Holstein animals (79.2 kg and 70 days old), housed in individual pens for 92 days were used here, and divided into three treatments: PROB (n=6), PREB (n=6) and PROB+ PREB (n=6). The consumption of PREB and the association PREB+PROB generated a gain in body weight about 10% more than PROB. In the blood count, the only change was the treatment x day interaction for monocyte counts, being higher on days 63 and 92 in the blood of the PREB and PROB animals, respectively, compared to the other groups. The PREB + PROB association from day 63 increased the activity of the glutathione S-transferase enzyme by 14% when compared to the consumption of only PREB, in addition to reducing the levels of TBARS in the blood by 35%. Furthermore, the association of PREB+PROB reduced by 12.5% and 16.2% the concentration of serum urea in relation to PREB and PROB, respectively. Animals in the PREB+PROB group had higher serum IgA levels compared to the PROB, contrary to what happened with the heavy chain IGG levels, that is, it was higher in the PROB compared to the PREB+ PROB association. On day 63, lower levels of haptoglobin were observed in PREB compared to the other groups. On day 92, lower levels of transferrin and acid glycoprotein were observed in the blood of animals that consumed PREB+PROB. Also on day 92, serum ceruplasmin levels in PROB were higher than in PREB animals. A higher of apparent digestibility coefficient (ADC) of organic matter (OM) was observed when the animal’s consumed prebiotic compared to probiotic, and the association of both did not differ from the two treatments for ADC of OM. The results allow us to conclude that the PREB+PROB association was important to minimize the physiological oxidative stress, as well as to raise the serum levels of IgA, an important mucosal immunoglobulin at the level of the digestive system; in addition, the combination of physiological results of prebiotic consumption alone or in combination reflected in greater weight gain in calves.

References

Ali, S. F., LeBel, C. P. & Bondy, S. C. 1992. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology. 13, 637-648.

Basarab, T., Stefanyk, V., Ivakhiv, M. & NiIŝański, W. 2020. Concentration of C-reactive protein and haptoglobin in cows with subclinical endometritis. Naukovij Vìsnik Veterinarnoï Medicini, [S.L.], n. 2160, p. 7-13.

Chaucheyras-Durand, F., Walker, D. N. & Bach, A. 2008. Effects of active dry yeasts on the rumen microbial ecosystem: Past, presente and future. Animal Feed Science and Technology, 145:(5). 125-29.

Dawson, K. A. & Pirvulescu, M. 1999. Mananoligossacarídeos derivados de leveduras como moduladores da resposta imunológica e alternativas aos promotores de crescimento antimicrobianos. 9th Ronda Latino Americanada Alltech; Curitiba, Paraná. Brasil. p.33-41.

Diaz, T. G., Branco, A. F., Jacovaci, F. A., Jobim, C. C., Daniel, J. L. P., Bueno, A. V. I. & Ribeiro, M. G. 2018. Use of live yeast and mannan-oligosaccharides in grain-based diets for cattle: ruminal parameters, nutrient digestibility, and inflammatory response. Plos One 13: 207127-207136.

Fagliari, J. J., Santana, A. E., Lucas, F. A., Campos, E. & Curi, P. R. (1998). Constituintes sanguíneos de bovinos recém-nascidos das raças Nelore (Bos indicus) e holandesa (Bom taurus) e de bubalinos (Bubalis bubalus) raça Murrah. Arquivos Brasileito de Medicina Veterinária e Zootecia 50, 253-262.

Feldman, B.F., Zinkl, J.G. & Jain, N.C. 2000. Schalm's veterinary hematology. 5. ed. Philadelphia: Lippincott Williams & Wilkins. 1344p.

Geron, L. J. V., Silva, H. F., Machado, R. J. T., Garcia, J., Mexia, A. A., Moura, D. C., Ribeiro, M. G. & Oliveira, E. B. 2013. Aditivos promotores de crescimento (antibióticos, ionóforos, probióticos e própolis) utilizados na alimentação animal. PubVet, (7), 237.

Halliwell, B. & Gutteridge, J. M. C. 2007. Free radicals in biology and medicine. Oxford: Clarendon Press, 543p.

Jana, U. K., Suryawanshi, R. K., Prajapati, B. P. & Kango. 2021. Naveen. Prebiotic mannooligosaccharides: synthesis, characterization and bioactive properties. Food Chemistry, 342: 128328.

Jentzsch A.M., Bachmann H., Furst, P. & Biesalski H. 1996. Improved analysis of malondialdehyde in human body fluids. Free Radical Biology Medicine 20: 251–256.

Komarek, A. R. 1993. A filter bag procedure for improved efficiency of fiber analysis. International Journal of Dairy Science 76: 250-259.

McCord, J. M. & Fridovich, I. 1969. Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). Journal Biology Chemistry 244:6049-6055.

Neto, M. D. F., Fernandes, J. J. R., Restle. J., Pádua. T. J., Rezende, P. L. P., Miotto, F. R. C. & Moreira. K. K. G. 2014. Desempenho de bovinos machos de origem leiteira submetidos a diferentes estratégias alimentares na recria e terminação. Semina: Ciências Agrárias, 34: 2117-2128.

Nelson, D.P. & Kiesow, L.A. 1972. Enthalpy of Decomposition of Hydrogen Peroxide by Catalase at 25°C (with Molar Coefficient of Hydrogen Peroxide Solution in the UV). Analytical Biochemistry, 49, 474-478.

Newman, K. 1994. Mannanologosaccharides: Natural polynmers whith significant impact on the gastrointestinal microflora and the immune system. In: Biotecnology in the feed industry. Proceedings of 10TH Annual Symposium, 1994. Nottingham University Press. London, 1994, p. 155-166.

Oliveira, D. S. 2020. Substituição da Virginiamicina por Produtos À Base de Levedura (Saccharomyces Cerevisiae) em Dietas de Bovinos. 48 f. Dissertação (Mestrado) - Curso de Zootecnia, Universidade Federal de Goiás, Goiânia.

Pereira A. S., Shitsuka, D.M., Pereira, F.J., Shitsuka, R. 2018. Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.

Restle. J. 1997. Áspectos quantitativos da carcaça de machos hereford, inteiros e castrados, abatidos aos quatorze meses. Pesquisa Agropecuária Brasileira 32: 1091-1095

Roger, V., Fonty, G., Bony. S. K. & Gouet, P. 1990. Effects of physiochemical factors on the adhesion to celulose Avicel ot the rumen bactéria Ruminococcus flavetaciens and Fibrobacter succinogenes. Applied and Environmental Microbiology, 56:3081.

Schuba, J., Südekum, K. H., Pfeffer, E.& Jayanegara, A. 2017. Excretion of faecal, urinary urea and urinary non-urea nitrogen by four ruminant species as influenced by dietary nitrogen intake: a meta-analysis. Livestock Science. 198: 82-88.

Senger, C. C., Kozloski, G. V., Sanchez, L. M. B., Mesquita, F. R., Alves, T. P. & Castagnino, D. S. 2008. Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Animal Feed Science 146: 169-174.

Spring, P., Wenk, C., Dawson, A. & Newman, K. E. 2000. The effects of dietary mannanoligossacharides on cecal parameters and concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poultry Science, 79: 205-211.

Tuoi, P.T., Assavacheep, P., Angkanaporn, K. & Assavacheep, A. 2016. Effects of β-glucan and mannan-oligosaccharide supplementation on growth performance, fecal bacterial population, and immune responses of weaned pigs. Thai Journal Veterinary Medicine 46(4): 589-599.

Wittwer, F. 2000. Diagnóstico dos desequilíbrios metabólicos de energia em rebanhos bovinos. In: González, F. H. D., Barcellos, J., Patino, H. O. & Ribeiro, L. A. Perfil metabólico em ruminantes: seu uso em nutrição e doenças nutricionais. Porto Alegre: Gráfica da Universidade Federal do Rio Grande do Sul.

Yuan, S. B., Chen, D. W., Zhang, K. Y. & Yu, B. 2007. Effects of oxidative stress on growth performance, nutrient digestibilities and activities of antioxidative enzymes of weanling pigs. Asian-Australian Journal Animal Science 20: 1600-1605.

Zapata, O., Cervantes, A., Barreras, A., Monge-Navarro, F., González-Vizcarra, V.M., Estrada-Angulo, A, Urías-Estrada,J. D., Corona, L., Zinn, R. A., Martínez-Alvarez, I. G., & Plascencia, A. 2021. Effects of single or combined supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria and total tract digestion in lambs. Small Ruminant Research 204: 1-6.

Zeoula, L. M., Beleze, J. R. F., Geron, L. J. V., Maeda, E. M., Prado, I. N. & Paula. M. C. 2008. Digestibilidade parcial e total de rações com a inclusão de ionóforo ou probiótico para bubalinos e bovinos. Revista Brasileira de Zootecnia 37: 563-571.

Published

27/07/2022

How to Cite

LAGO, R. V. P. .; VITT, M. G. de .; BRUNETTO, A. L. R. .; BISSACOTTI, B. F. .; COPETTI, P. M. .; CARVALHO, R. A.; PEREIRA, W. A. B. .; SOLIVO, G.; ZOTTI, C. A.; VEDOVATTO, M.; SILVA, A. S. D. . Prebiotic alone or combined with probiotic has a positive effect on organic matter digestibility, performance, immune and antioxidant response of calves after weaning. Research, Society and Development, [S. l.], v. 11, n. 10, p. e188111032415, 2022. DOI: 10.33448/rsd-v11i10.31415. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/31415. Acesso em: 18 apr. 2024.

Issue

Section

Agrarian and Biological Sciences