Could trees change future behaviour in xylogenesis to improve fitness based on past and current conditions? A tropical case of study
DOI:
https://doi.org/10.33448/rsd-v11i9.31442Keywords:
Carbon allocation; Lignin; Rainfall; Specific Gravity; Wood traits.Abstract
Carbon allocation is the Achilles' heel of forest models, due to the difficulty to predict responses induced by environmental changes. Structural-functional models involve the plant's strategy to split its resources between organs and functions. An important functional characteristic is xylem architecture, which is connected to water use strategy and plant productivity besides one of the most important C-sink (that absorbs carbon). Our goal is to use the information present in the tree rings of Schizolobium parahyba, to expand the possibilities of teleonomic approaches in structural-functional models of tree species. In a comparative xylem rings analyses, we established relationships among specific gravity, vessel traits as hydraulic conductivity potential, double wall thickness, and autofluorescence intensity of lignin. The analyses showed that growth ring characteristics seem to have been modulated not only by water availability of the period of wood formation but also by the water availability of previous years. This relationship would be occurring due to the greater capacity of accumulation of reserve carbohydrates in years whose climatic conditions were favourable. This pattern of behaviour entails the formation of two distinct growth ring patterns, one with high and the other with low structural cost. This case study shows that the species can change future behaviour in xylogenesis to improve fitness based on past and current conditions. Our study may help to extend the possibilities of teleonomic approaches in structural-functional models of tree species, which will assist in a greater understanding of how trees balance their carbon allocation in wood according to changes in the environment.
References
Aloni, R. (2013). The role of hormones in controlling vascular differentiation. In: Fromm J, ed. Cellular Aspects of Wood Formation, Heidelberg, Germany: Springer-Verlag, 99-140. https://doi.org/10.1007/s00425-013-1927-8
Amthor, J.S. (2003). Efficiency of lignin biosynthesis: a quantitative analysis. Annals of Botany, 91(6), 673-695. https://doi.org/10.1093/aob/mcg073
Bréda, N., R, Huc., A, Granier., & Dreyer, E. (2006). Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Annals of Forest Science, 63(6), 625-644. https://doi.org/10.1051/forest:2006042
Chaffey, N. (2002). Wood formation in trees: Cell and Molecular Biology Techniques. Taylor & Francis Inc. https://10.1093/aob/mcf216
Cosgrove, D. J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6, 850-861. https://doi.org/10.1038/nrm1746
Dietze, M. C., Sala, A., Carbone, M. S., Czimczik, C. I., Mantooth, J. A., Richardson, A. D., & Vargas, R. (2014). Nonstructural Carbon in Wood Plants. Annual Review of Plant Biology, 65, 667-687. https://doi.org.10.1146/annurev-arplant-050213-040054
Donaldson, L. (2013). Softwood and hardwood lignin fluorescence spectra of wood cell walls in different mounting media. IAWA Journal, 34(1), 3-19. https://doi.org.10.1163/22941932-00000002
Epron, D., Nouvellon, Y., & Ryan, M. G. (2012). Introduction to the invited issue on carbon allocation of trees and forests. Tree Physiology, 32(6), 639-643. https://doi.org/10.1093/treephys/tps055
Fatichi, S., Leuzinger, S., & Körner, C. (2014). Moving beyond photosynthesis: from carbon source to sink-driven vegetation modelling. New Phytologist, 201(4), 1086-1095. https://doi.org/10.1111/nph.12614
Fonti, P., & Jansen, S. (2012). Xylem plasticity in response to climate. New Phytologist, 195(4), 734-736. https://doi.org/10.1111/j.1469-8137.2012.04252.x
Fournier, M., Dlouhá, J., Jaouen, G., & Almeras, T. (2013). Integrative biomechanics for tree ecology: beyond wood density and strength. Journal of Experimental Botany, 64 (15), 4793-4815. https://doi.org/10.1093/jxb/ert279
Franklin, O., Johansson, J., Dewar, R. C., Dieckmann, U., McMurtrie, R. E., Brännström, A., & Dybzinski, R. (2012). Modelling carbon allocation in trees: a search for principles. Tree Physiology, 32(6):648-666. https://doi.org/10.1093/treephys/tpr138
Holmes, R. L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-78.
Hu, W., Harding, S. A., Lung, J., Popko, J. L., Ralph, J., Stokke, D. D., Tsai, C., & Chiang, V. L. (1999). Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnology, 17, 808-812. https://doi.org/10.1038/11758
Johnssona, C., Xu, J., Xuea, W., Dubreuila, C., Lezhnevaa, L., & Fischera, U. (2019). The plant hormone auxin directs the timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors. Physiologia Plantarum, 165(4), 673–689. https://doi.org/10.1111/ppl.12766
Joshi, C. P., & Mandsfield, S. D. (2007). The cellulose paradox: simple, molecule, complex biosynthesis. Current Opinion in Plant Biology, 10(3), 220-226. https://doi.org/10.1016/j.pbi.2007.04.013
Kalve, S., De Vos, D., & Beemster, G. T. S. (2014). Leaf development: a cellular perspective. Frontiers in Plant Science, 5:(362), 1-25. https://doi.org/10.3389/fpls.2014.00362
Kramer, P. J. (1964). The role of water and wood formation. In: Zimmermann MH, ed. The Formation of Wood in Forest Trees. Academic Press Inc., 519-532.
Lacointe, A. (2000). Carbon allocation among tree organs: A review of basic processes and representation in functional-structural tree models. Annals of Forest Science, 57(5-6), 521-533. https://doi.org/10.1051/forest:2000139
Larjavaara, M., & Muller-Landau, H. (2010). Rethinking the value of high wood density. Functional Ecology, 24(4): 701-705. https://doi.org/10.1111/j.1365-2435.2010.01698.x
Le Clere, S., Schmelz, E. A., & Chourey, P. S. (2010). Sugar Levels Regulate Tryptophan-Dependent Auxin Biosynthesis in Developing Maize Kernels. Plant Physiology, 153(1), 306-318. https://doi.org/10.1104/pp.110.155226
Le Roux, X., Lacointe, A., Escobar-Gutiérrez, A., & Le Dizès, S. (2001). Carbon-based models of individual tree growth: A critical appraisal. Annals of Forest Science, 58 (5), 469-506. https://doi.org/10.1051/forest:2001140
Letort, V., Cournède, P., Mathieu, A., Reffye, P., Constant, T. (2008). Parametric Identification of a Functional-Structural Tree Growth Model and Application to Beech Trees (Fagus Sylvatica). Functional Plant Biology, 35, 951-963. https://doi.org/arXiv:1010.5145
Levitt, J. (1980). Responses of Plants to Environmental Stresses: Water, Radiation, Salt, and Other Stresses. Michigan: Academic Press. 607 p.
Macadam, J. W., & Nelson, C. J. (2002). Secondary cell wall deposition causes radial growth of fibre cells in the maturation zone of elongating tall fescue leaf blades. Annals of Botany, 89(1), 89-96. https://doi.org/10.1093/aob/mcf010
Mähönen, A. P., Tusscher, K., Siligato, R., Smetana, O., Diaz-Triviño, S., Salojärvi, J., Waschsman, G., Prasad, K., Heidstra, R., & Scheres, B. (2014). PLETHORA gradient formation mechanism separates auxin responses. Nature, 515(6), 125-129. https://doi.org/10.1038/nature13663
Mäkelä, A. (2012). On guiding principles for carbon allocation in eco-physiological growth models. Tree Physiology, 32(6), 644-647. https://doi.org/10.1093/treephys/tps033
Marcati, C. R., Milanez, C. R. D., & Machado, S. R. (2008). Seasonal development of secondary xylem and phloem in Schizolobium parahyba (Vell.) Blake (Leguminosae: Caesalpinioideae). Trees, 22, 3–12. https://doi.org/10.1007/s00468-007-0173-8
Marcelis, L. F. M., & Heuvelink, E. (2007). Concepts of modelling carbon allocation among plant organs. In: Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB, eds. Functional-Structural Plant Modelling in Crop Production, Netherlands: Springer, pp. 103-111.
Matsumoto-Kitano, M., Kusumoto, T., Tarkowshi, P., Kinoshita-Tsujimura, K., & Václaviková, K. (2008). Cytokinins are central regulators of cambial activity. PNAS, 105(50), 20027-20031. https://doi.org/10.1073/pnas.0805619105
McCann, M. C., Roberts, K., Carpita, N. C. (2001). Plant Cell Growth and Elongation. eLS. https://doi.org/10.1038/npg.els.0001688
McQueen-Mason, S., Durachko, D. M., & Cosgrove, D. J. (1992). Two endogenous proteins that induce cell wall extension in plants. The Plant Cell, 4(11), 1425-1433. https://doi.org/10.1105/tpc.4.11.1425
Millard, P., Sommerkorn, M., & Grelet, G. (2007). Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 175(1), 11-28. https://doi.org/10.1111/j.1469-8137.2007.02079.x
Nieminen, K., Immanen, J., Laxell, M., Kauppinen, L., Tarkowski, P., Dolezal, K., Tähtiharju, S., Elo, A., Decourteix, M., Ljung, K., Bhalerao, R., Keinonen, K., Albert, V. A., & Helariutta, Y. (2008). Cytokinin signsling regulates cambial development in poplar. PNAS, 105(50), 20032-20037. https://doi.org/10.1073/pnas.0805617106
Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H., & Sederoff, R. (2010). Lignin and Biomass: A Negative Correlation for Wood Formation and Lignin Content in Trees. Plant Physiology, 154(2), 555-561. https://doi.org/10.1104/pp.110.161281
Ogle, K., & Pacala, S. W. (2009). A modelling framework for inferring tree growth and allocation from physiological, morphological and allometric traits. Tree Physiology, 29(4), 587-605. https://doi.org/10.1093/treephys/tpn051
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., & Wagner, H. (2015). Vegan: Community Ecology Package. R package version 2.3-0. http://CRAN.R-project.org/package=vegan
Ortega, J. K. E. (2010). Plant Cell Growth in Tissue. Plant Physiology, 154(3), 1244-1253. https://doi.org/10.1104/pp.110.162644
Palacio, S., Paterson, E., Sim, A., Hester, A. J., & Millard, P. (2011). Browsing affects intra-ring carbon allocation in species with contrasting wood anatomy. Tree Physiology, 31(2), 150-159. https://doi.org/10.1093/treephys/tpq110
Pantin, F., Simonneau, T., & Muller, B. (2012). Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytologist 196 (2), 349-366. https://doi.org/10.1111/j.1469-8137.2012.04273.x
Rao, K. S., & Rajput, K. S. (2001). Relationship between seasonal cambial activity, development of xylem and phenology in Azadirachta indica growing in different forests of Gujarat State. Annals Forest Science, 58(6), 691-698. https://doi.org/10.1051/forest:2001156
R Core Team. (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
Rossi, M., Faria, A. J., Wenzel, R., Câmara, C. D., Arcova, F. C. S., Cicco, V., Ranzini, M., Luiz, R. A. F., Santos, J. B. A., Souza, LFS, & Veneziani, Y. (2009). Avaliação do meio físico. In: Leonel C, ed. Plano de Manejo do Parque Estadual Alberto Löfgren. São Paulo: Instituto Florestal, p. 11-16.
Sairanen, I., Novák, O., Pencík, A., Ikeda, Y., Jones, B., Sandberg, G., & Ljung, K. (2012). Soluble Carbohydrates Regulate Auxin Biosynthesis via PIF Proteins in Arabidopsis. The Plant Cell, 24(12), 4907-4916. https://doi.org/10.1105/tpc.112.104794
Schuetz, M., Smith, R., & Ellis, B. (2012). Xylem tissue specification, patterning, and differentiation mechanisms. Journal of Experimental Botany, 64(1), 11-31. https://doi.org/10.1093/jxb/ers287
Simard, S., Giovannelli, A., Treydte, K., Traversi, M. L., King, G. M., Frank, D., & Fonti, P. (2013). Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiology, 33 (9), 913-923. https://doi.org/10.1093/treephys/tpt075
Tyree, M. T., & Ewers, F. W. (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119(34), 345-360. https://doi.org/10.1111/j.1469-8137.1991.tb00035.x
Vanneste, S., & Friml J. (2013). Calcium: the missing link in auxin action. Plants, 2 (24), 650-675. https://doi.org/ 10.3390/plants2040650
Van Wijk, M. T., Willians, M., Gough, L., Hobbie, S. E., & Shaver, G. R. (2003). Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? Journal of Ecology, 91(4), 664-676. https://doi.org/10.1046/j.1365-2745.2003.00788.x
Von Arx, G., Archer, S. R., & Hughes, M. K. (2012). Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Annals of Botany, 109(6), 1091-1100. https://doi.org/10.1093/aob/mcs030
Wang, L., & Yong-Ling R. (2013). Regulation of cell division and expansion by sugar and auxin signalling. Frontiers in Plant Science, 4(163), https://doi.org/10.3389/fpls.2013.00163.
Wile, E., & Helliker, B. (2012). A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New phytologist, 195(2), 285-289.https://doi.org/ 10.1111/j.1469-8137.2012.04180.x
Zang, C., & Biondi, F. (2013). Dendroclimatic calibration in R: The bootRes package for response and correlation function analysis. Dendrochronologia, 31(1), 68-74. https://doi.org/10.1016/j.dendro.2012.08.001
Zweifel, R., Zimmermann, L., Zeugin, F., & Newbery, D. M. (2006). Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. Journal of Experimental Botany, 57(6), 1445-1459. https://doi.org/10.1093/jxb/erj125
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Camila Moura Santos; Diego Romeiro; Erick Phelipe Amorim; Luís Alberto Bucci; Kishore Shankarsinh Rajput; Eduardo Luiz Longui
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.