In vitro evaluation of cytotoxicity in human osteoblastic cells and antimicrobial activity in the biofilm of different root canal sealers

Authors

DOI:

https://doi.org/10.33448/rsd-v11i10.32842

Keywords:

Biofilms; Cell Survival; Endodontics; In Vitro Techniques; Osteoblasts.

Abstract

Objective: Evaluate the cytotoxicity in human osteoblastic cells and antimicrobial activity in different root canal sealers in vitro. Methods: BioRoot RCS, TotalFill BC Sealer, and Bio-C Sealer were used in experimental groups, and AH Plus was used as a control. Human osteoblast-like cells and MTT quantitative colorimetric assay were used to evaluate cytotoxicity. Saos-2 cells were exposed to undiluted sealer extracts for 24 h. The supernatant was then collected and the formazan crystals resulting from MTT reduction were dissolved in pure dimethyl sulfoxide. Absorbance was measured in an automated spectrophotometer at a wavelength of 540 nm. Antimicrobial activity was analyzed by the direct contact test using a polymicrobial biofilm composed of Enterococcus faecalis, Candida albicans, and Streptococcus mutans. At 24, 48, and 72 h, colony-forming units were counted on agar plates. A nonparametric Kruskal-Wallis test was used for the statistical analysis. The level of significance was set at 5%. Results: AH Plus showed the lowest cytotoxicity after 24 h, with a significant difference in relation to BioRoot RCS and Bio-C Sealer (p ≤ 0.01). There was no significant difference in cytotoxicity between TotalFill BC Sealer and Bio-C Sealer (p > 0.05). At 24 h, TotalFill BC Sealer and AH Plus showed the least microbial growth compared to Bio-C Sealer (p < 0.05). At 48 and 72 h, there were no significant differences between sealers (p > 0.05). Conclusions: AH Plus had the lowest cytotoxicity. TotalFill BC Sealer and AH Plus yielded greater reductions in microbial counts in the first 24 h compared to Bio-C Sealer. Clinical Relevance: 2c.

References

Baumgartner, G., Zehnder, M., & Paque, F. (2007). Enterococcus faecalis type strain leakage through root canals filled with Gutta-Percha/AH plus or Resilon/Epiphany. J Endod, 33(1), 45-47. https://doi.org/10.1016/j.joen.2006.08.002.

Bienek, D. R., Frukhtbeyn, S. A., Giuseppetti, A. A., Okeke, U. C., & Skrtic, D. (2018). Antimicrobial monomers for polymeric dental restoratives: cytotoxicity and physicochemical properties. J Funct Biomater, 9(1), https://doi.org/10.3390/jfb9010020.

Bortoluzzi, E. A., Niu, L. N., Palani, C. D., El-Awady, A. R., Hammond, B. D., Pei, D. D., Tian, F. C., Cutler, C. W., Pashley, D. H., & Tay, F. R. (2015). Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization. Dent Mater, 31(12), 1510-1522. https://doi.org/10.1016/j.dental.2015.09.020.

Brackett, M. G., Marshall, A., Lockwood, P. E., Lewis, J. B., Messer, R. L., Bouillaguet, S., & Wataha, J. C. (2008). Cytotoxicity of endodontic materials over 6-weeks ex vivo. Int Endod J, 41(12), 1072-1078. https://doi.org/10.1111/j.1365-2591.2008.01471.x.

Camargo, C. H., Camargo, S. E., Valera, M. C., Hiller, K. A., Schmalz, G., & Schweikl, H. (2009). The induction of cytotoxicity, oxidative stress, and genotoxicity by root canal sealers in mammalian cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 108(6), 952-960. https://doi.org/10.1016/j.tripleo.2009.07.015.

Candeiro, G. T. M., Moura-Netto, C., D'Almeida-Couto, R. S., Azambuja-Junior, N., Marques, M. M., Cai, S., & Gavini, G. (2016). Cytotoxicity, genotoxicity and antibacterial effectiveness of a bioceramic endodontic sealer. Int Endod J, 49(9), 858-864. https://doi.org/10.1111/iej.12523.

Candeiro, G. T., Correia, F. C., Duarte, M. A., Ribeiro-Siqueira, D. C., & Gavini, G. (2012). Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J Endod, 38(6), 842-845. https://doi.org/10.1016/j.joen.2012.02.029.

Colombo, M., Poggio, C., Dagna, A., Meravini, M. V., Riva, P., Trovati, F., & Pietrocola, G. (2018). Biological and physico-chemical properties of new root canal sealers. J Clin Exp Dent, 10(2), e120-e126. https://doi.org/10.4317/jced.54548.

Cotti, E., Petreucic, V., Re, D., & Simbula, G. (2014). Cytotoxicity evaluation of a new resin-based hybrid root canal sealer: an in vitro study. J Endod, 40(1), 124-128. https://doi.org/10.1016/j.joen.2013.09.038.

Eldeniz, A. U., Mustafa, K., Orstavik, D., & Dahl, J. E. (2007). Cytotoxicity of new resin-, calcium hydroxide- and silicone-based root canal sealers on fibroblasts derived from human gingiva and L929 cell lines. Int Endod J, 40(5), 329-337. https://doi.org/10.1111/j.1365-2591.2007.01211.x.

Ginebra, M. P., Fernandez, E., De Maeyer, E. A., Verbeeck, R. M., Boltong, M. G., Ginebra, J., Driessens, F. C., & Planell, J. A. (1997). Setting reaction and hardening of an apatitic calcium phosphate cement. J Dent Res, 76(4), 905-912. https://doi.org/10.1177/00220345970760041201.

Gomes, B. P., Pinheiro, E. T., Sousa, E. L., Jacinto, R. C., Zaia, A. A., Ferraz, C. C., & de Souza-Filho, F. J. (2006). Enterococcus faecalis in dental root canals detected by culture and by polymerase chain reaction analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 102(2), 247-253. https://doi.org/10.1016/j.tripleo.2005.11.031.

Huang, Y., Fenech, M., & Shi, Q. (2011). Micronucleus formation detected by live-cell imaging. Mutagenesis, 26(1), 133-138. https://doi.org/10.1093/mutage/geq062.

Jafari, F., Aghazadeh, M., Jafari, S., Khaki, F., & Kabiri, F. (2017). In vitro Cytotoxicity Comparison of MTA Fillapex, AH-26 and Apatite Root Canal Sealer at Different Setting Times. Iran Endod J, 12(2), 162-167. https://doi.org/10.22037/iej.2017.32.

Jagtap, P., Shetty, R., Agarwalla, A., Wani, P., Bhargava, K., & Martande, S. (2018). Comparative evaluation of cytotoxicity of root canal sealers on cultured human periodontal fibroblasts: in vitro study. J Contemp Dent Pract, 19(7), 847-852. https://doi.org/10.5005/jp-journals-10024-2346.

Kayaoglu, G., Erten, H., Alacam, T., & Orstavik, D. (2005). Short-term antibacterial activity of root canal sealers towards Enterococcus faecalis. Int Endod J, 38(7), 483-488. https://doi.org/10.1111/j.1365-2591.2005.00981.x.

Khashaba, R. M., Chutkan, N. B., & Borke, J. L. (2009). Comparative study of biocompatibility of newly developed calcium phosphate-based root canal sealers on fibroblasts derived from primary human gingiva and a mouse L929 cell line. Int Endod J, 42(8), 711-718. https://doi.org/10.1111/j.1365-2591.2009.01572.x.

Kishen, A., Shi, Z., Shrestha, A., & Neoh, K. G. (2008). An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod, 34(12), 1515-1520. https://doi.org/10.1016/j.joen.2008.08.035.

Koch, K. & Brave, D. (2009). A new day has dawned: the increased use of bioceramics in endodontics. Dentaltown, 10, 39-43.

Koch, K. A. & Brave, D. G. (2012). Bioceramics, Part 2: The clinician's viewpoint. Dent Today, 31(2), 118, 120, 122-115.

Leonardo, M. R., Bezerra da Silva, L. A., Filho, M. T., & Santana da Silva, R. (1999). Release of formaldehyde by 4 endodontic sealers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 88(2), 221-225. https://doi.org/10.1016/s1079-2104(99)70119-8.

Loushine, B. A., Bryan, T. E., Looney, S. W., Gillen, B. M., Loushine, R. J., Weller, R. N., Pashley, D. H., & Tay, F. R. (2011). Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. J Endod, 37(5), 673-677. https://doi.org/10.1016/j.joen.2011.01.003.

Mann, A., Zeng, Y., Kirkpatrick, T., van der Hoeven, R., Silva, R., Letra, A., & Chaves de Souza, L. (2022). Evaluation of the Physicochemical and Biological Properties of EndoSequence BC Sealer HiFlow. J Endod, 48(1), 123-131. https://doi.org/10.1016/j.joen.2021.10.001.

Nair, A. V., Nayak, M., Prasada, L. K., Shetty, V., Kumar, C. N. V., & Nair, R. R. (2018). Comparative evaluation of cytotoxicity and genotoxicity of two bioceramic sealers on fibroblast cell line: an in vitro study. J Contemp Dent Pract, 19(6), 656-661. https://doi.org/10.5005/jp-journals-10024-2315.

Oztan, M. D., Yilmaz, S., Kalayci, A., & Zaimoglu, L. (2003). A comparison of the in vitro cytotoxicity of two root canal sealers. J Oral Rehabil, 30(4), 426-429. https://doi.org/10.1046/j.1365-2842.2003.01053.x.

Peters, O. A. (2013). Research that matters - biocompatibility and cytotoxicity screening. Int Endod J, 46(3), 195-197. https://doi.org/10.1111/iej.12047.

Pizzo, G., Giammanco, G. M., Cumbo, E., Nicolosi, G., & Gallina, G. (2006). In vitro antibacterial activity of endodontic sealers. J Dent, 34(1), 35-40. https://doi.org/10.1016/j.jdent.2005.03.001.

Poggio, C., Arciola, C. R., Beltrami, R., Monaco, A., Dagna, A., Lombardini, M., & Visai, L. (2014). Cytocompatibility and antibacterial properties of capping materials. ScientificWorldJournal, 2014:181945. https://doi.org/10.1155/2014/181945.

Poggio, C., Riva, P., Chiesa, M., Colombo, M., & Pietrocola, G. (2017). Comparative cytotoxicity evaluation of eight root canal sealers. J Clin Exp Dent, 9(4), e574-e578. https://doi.org/10.4317/jced.53724.

Poggio, C., Trovati, F., Ceci, M., Colombo, M., & Pietrocola, G. (2017). Antibacterial activity of different root canal sealers against Enterococcus faecalis. J Clin Exp Dent, 9(6), e743-e748. https://doi.org/10.4317/jced.53753.

Prati, C., & Gandolfi, M. G. (2015). Calcium silicate bioactive cements: Biological perspectives and clinical applications. Dent Mater, 31(4), 351-370. https://doi.org/10.1016/j.dental.2015.01.004.

Rodriguez-Lozano, F. J., Garcia-Bernal, D., Onate-Sanchez, R. E., Ortolani-Seltenerich, P. S., Forner, L., & Moraleda, J. M. (2017). Evaluation of cytocompatibility of calcium silicate-based endodontic sealers and their effects on the biological responses of mesenchymal dental stem cells. Int Endod J, 50(1), 67-76. https://doi.org/10.1111/iej.12596.

Sanz, J. L., Guerrero-Girones, J., Pecci-Lloret, M. P., Pecci-Lloret, M. R., & Melo, M. (2021). Biological interactions between calcium silicate-based endodontic biomaterials and periodontal ligament stem cells: A systematic review of in vitro studies. Int Endod J, 54(11), 2025-2043. https://doi.org/10.1111/iej.13600.

Schilder, H. (2006). Filling root canals in three dimensions. 1967. J Endod, 32(4), 281-290. https://doi.org/10.1016/j.joen.2006.02.007.

Singh, G., Gupta, I., Elshamy, F. M. M., Boreak, N., & Homeida, H. E. (2016). In vitro comparison of antibacterial properties of bioceramic-based sealer, resin-based sealer and zinc oxide eugenol based sealer and two mineral trioxide aggregates. Eur J Dent, 10(3), 366-369. https://doi.org/10.4103/1305-7456.184145.

Sundqvist, G., Figdor, D., Persson, S., & Sjogren, U. (1998). Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 85(1), 86-93. https://doi.org/10.1016/s1079-2104(98)90404-8.

Vouzara, T., Dimosiari, G., Koulaouzidou, E. A., & Economides, N. (2018). Cytotoxicity of a new calcium silicate endodontic sealer. J Endod, 44(5), 849-852. https://doi.org/10.1016/j.joen.2018.01.015.

Weiss, E. I., Shalhav, M., & Fuss, Z. (1996). Assessment of antibacterial activity of endodontic sealers by a direct contact test. Endod Dent Traumatol, 12(4), 179-184. https://doi.org/10.1111/j.1600-9657.1996.tb00511.x.

Willershausen, I., Wolf, T., Kasaj, A., Weyer, V., Willershausen, B., & Marroquin, B. B. (2013). Influence of a bioceramic root end material and mineral trioxide aggregates on fibroblasts and osteoblasts. Arch Oral Biol, 58(9), 1232-1237. https://doi.org/10.1016/j.archoralbio.2013.04.002.

Zhang, H., Shen, Y., Ruse, N. D., & Haapasalo, M. (2009). Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis. J Endod, 35(7), 1051-1055. https://doi.org/10.1016/j.joen.2009.04.022.

Zordan-Bronzel, C. L., Esteves Torres, F. F., Tanomaru-Filho, M., Chavez-Andrade, G. M., Bosso-Martelo, R., & Guerreiro-Tanomaru, J. M. (2019a). Evaluation of physicochemical properties of a new calcium silicate-based sealer, Bio-C sealer. J Endod, 45(10), 1248-1252. https://doi.org/10.1016/j.joen.2019.07.006.

Zordan-Bronzel, C. L., Tanomaru-Filho, M., Rodrigues, E. M., Chavez-Andrade, G. M., Faria, G., & Guerreiro-Tanomaru, J. M. (2019b). Cytocompatibility, bioactive potential and antimicrobial activity of an experimental calcium silicate-based endodontic sealer. Int Endod J, 52(7), 979-986. https://doi.org/10.1111/iej.13086.

Zordan-Bronzel, C. L., Tanomaru-Filho, M., Torres, F. F. E., Chavez-Andrade, G. M., Rodrigues, E. M., & Guerreiro-Tanomaru, J. M. (2021). Physicochemical Properties, Cytocompatibility and Antibiofilm Activity of a New Calcium Silicate Sealer. Braz Dent J, 32(4), 8-18. https://doi.org/10.1590/0103-6440202103314.

Downloads

Published

06/08/2022

How to Cite

JANINI, A. C. P. .; BUENO, C. E. da S. .; DE MARTIN, A. S. de .; PELEGRINE, R. A.; FONTANA, C. E.; HUSSNE, R. P. .; ACCORSI-MENDONÇA, T.; PINHEIRO, S. L. In vitro evaluation of cytotoxicity in human osteoblastic cells and antimicrobial activity in the biofilm of different root canal sealers. Research, Society and Development, [S. l.], v. 11, n. 10, p. e430111032842, 2022. DOI: 10.33448/rsd-v11i10.32842. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32842. Acesso em: 5 jan. 2025.

Issue

Section

Health Sciences