Environmental elimination estimate and literature review of ecotoxicological aspects of the main widely used antiretrovirals in Brazil
DOI:
https://doi.org/10.33448/rsd-v11i10.32975Keywords:
Antiretrovirals; Ecotoxicology; Environment.Abstract
Objective: To estimate the consumption and quantity of unaltered antiretrivirals (ARV) eliminated into the environment and to carry out a literature research on aquatic ecotoxicological studies of ARV used in Brazil. Methodology: We requested from one of the ARV dispensing units in the city of Belo-Horizonte (BH) the amount of ARV dispensed in the years 2018-2019-2020. Considering the amount dispensed in 2020, the daily dose, and the elimination rate, the amount of drug in unchanged form in the environment was estimated. For entire municipality of BH and Brazil, we used epidemiological data were used regarding individuals using antiretroviral therapy (ART) in 2020, the proportion of people living with HIV using the main ART regimen, following the same estimation methodology used previously. Structured and individual searches were carried out for each ARV used in Brazil, relating it to ecotoxicology, through Google Scholar, National Center for Biotechnology Information and Scifinder, in addition to the use of the fass.se platform. Results: Four articles presented results of acute or chronic toxicity in ecotoxicological models involving ARV. Dolutegravir and efavirenz were found to be highly toxic in ecotoxicological models. In 2020, approximately 2,167kg of ARVs in unchanged form were released into the environment in BH. In Brazil it was 112,274kg. Conclusion: It is urgent to quantify the main ARV in water bodies. With these data together with ecotoxicological data it will be possible to establish risk criteria for possible measures to control or mitigate these contaminants in the environment, especially actions to improve wastewater/water treatment.
References
ABNT. (2022). Entidade responsável pela elaboração das Normas Brasileiras (ABNT NBR), elaboradas por seus Comitês Brasileiros (ABNT/CB), Organismos de Normalização Setorial (ABNT/ONS) e Comissões de Estudo Especiais (ABNT/CEE). Associação Brasileira de Normas técnicas website: https://www.abnt.org.br/
Akkari, A. C. S., Munhoz, I. P., Tomioka, J., Dos Santos, N. M. B. F., & Dos Santos, R. F. (2016). Inovação tecnológica na indústria farmacêutica: Diferenças entre a Europa, os EUA e os países farmaemergentes. Gestao e Producao, 23(2), 365–380. https://doi.org/10.1590/0104-530X2150-15
Aquino, S. F., Brandt, E. M. F., & Chernicharo, C. A. de L. (2013). Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: Revisão da literatura. Engenharia Sanitaria e Ambiental, 18(3), 187–204. https://doi.org/10.1590/S1413-41522013000300002
BRASIL. (2019). Relação Nacional de Medicamentos Essenciais 2020 (M. da Saúde, Ed.). Brasília-DF: Ministério da Saúde. Secretaria de Ciência, Tecnologia, Inovação e Insumos Estratégicos em Saúde. Departamento de Assistência Estratégicos, Farmacêutica e Insumos.
BRASIL. (2020). Boletim Epidemiológico HIV / Aids | 2020. Secretaria de Vigilância Em Saúde / Ministério Da Saúde, 1, 68. http://www.aids.gov.br/pt-br/pub/2020/boletim-epidemiologico-hivaids-2020
BRASIL. (2022). Vigilância Epidemiológica - Indicadores clínicos do HIV. Departamento de Doenças de Condições Crônicas e Infecções Sexualmente Transmissíveis. Miistério da Saúde website: http://www.aids.gov.br/pt-br/publico-geral/hiv/vigilancia-epidemiologica
Brito, N. N., & Marinho Silva, V. B. (2012). Processo Oxidativo Avançado E Sua Aplicação Ambiental. REEC - Revista Eletrônica de Engenharia Civil, 3(1), 36–47. https://doi.org/10.5216/reec.v3i1.17000
CONAMA. (2005). Resolução 357/2005. Dispõe Sobre a Classificação Dos Corpos de Água e Diretrizes Ambientais Para o Seu Enquadramento, Bem Como Estabelece as Condições e Padrões de Lançamento de Efluentes, e Dá Outras Providências., (53), 58–63.
CONAMA. (2011a). Resolução 430/2011. Dispõe Sobre Condições e Padrões de Lançamento de Efluentes, Complementa e Altera a Resolução No 357, de 17 de Março de 2005, Do Conselho Nacional Do Meio Ambiente - CONAMA., (92), 89.
CONAMA. Resolução CONAMA n° 430, de 13 de Maio de 2011. , Diário Oficial da União § (2011).
Costa, C. R., Olivi, P., Botta, C. M. R., & Espindola, E. L. G. (2008). A toxicidade em ambientes aquáticos: Discussão e métodos de avaliação. Química Nova, 31(7), 1820–1830. http://static.sites.sbq.org.br/quimicanova.sbq.org.br/pdf/Vol31No7_1820_37-RV07485.pdf
Cronin, M. A., & George, E. (2020). The Why and How of the Integrative Review. Organizational Research Methods, 1–25. https://doi.org/10.1177/1094428120935507
FASS. (2016). FASS.SE. In Collaborative Website of Swedish Pharmaceutical Companies That Provides Information about Medicines Marketed in Sweden. Retrieved from https://www.fass.se/LIF/startpage
Fioreze, M., Santos, E. P. dos, & Schmachtenberg, N. (2014). Processos oxidativos avançados: Fundamentos e aplicação ambiental. Revista Eletrônica Em Gestão, Educação e Tecnologia Ambiental, 18(1), 79–91. https://doi.org/10.5902/2236117010662
Gazola, L. (2020). Análise das legislações estaduais brasileiras sob ensaios ecotoxicológicos como ferramenta no controle de lançamento de efluentes industriais (Dissertação de mestrado - Universidade Federal de Santa Catarina). https://repositorio.ufsc.br/bitstream/handle/123456789/216418/PPCA0047-D.pdf?sequence=-1&isAllowed=y
Instituto Trata Brasil. (2021). Ranking Do Saneamento Instituto Trata Brasil 2021 (Snis 2019) (Vol. 2021). https://tratabrasil.org.br/images/estudos/Ranking_saneamento_2021/Relatório_-_Ranking_Trata_Brasil_2021_v2.pdf
Jain, S., Kumar, P., Vyas, R. K., Pandit, P., & Dalai, A. K. (2013). Occurrence and removal of antiviral drugs in environment: A review. Water, Air, and Soil Pollution, 224(2). https://doi.org/10.1007/s11270-012-1410-3
Kornis, G. E. M., Braga, M. H., & de Paula, P. A. B. (2014). Transformações recentes da indústria farmacêutica: Um exame da experiência mundial e Brasileira no século XXI. Physis, 24(3), 885–908. https://doi.org/10.1590/S0103-73312014000300012
Kumar, M., Mazumder, P., Mohapatra, S., Kumar Thakur, A., Dhangar, K., Taki, K., & Kuroda, K. (2021). A chronicle of SARS-CoV-2: Seasonality, environmental fate, transport, inactivation, and antiviral drug resistance. Journal of Hazardous Materials, 405(336). https://doi.org/10.1016/j.jhazmat.2020.124043
Magalhães, D. de P., & Ferrão-Filho, A. da S. (2008). A Ecotoxicologia como ferramenta no Biomonitoramento de Ecossistemas Aquáticos. Oecologia Australis, 12(03), 355–381. https://doi.org/10.4257/oeco.2008.1203.02
Minguez, L., Pedelucq, J., Farcy, E., Ballandonne, C., Budzinski, H., & Halm-Lemeille, M. P. (2016). Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environmental Science and Pollution Research, 23(6), 4992–5001. https://doi.org/10.1007/s11356-014-3662-5
Muriuki, C., Kairigo, P., Home, P., Ngumba, E., Raude, J., Gachanja, A., & Tuhkanen, T. (2020). Mass loading, distribution, and removal of antibiotics and antiretroviral drugs in selected wastewater treatment plants in Kenya. Science of the Total Environment, 743, 140655. https://doi.org/10.1016/j.scitotenv.2020.140655
Nannou, C., Ofrydopoulou, A., Evgenidou, E., Heath, D., Heath, E., & Lambropoulou, D. (2020). Antiviral drugs in aquatic environment and wastewater treatment plants: A review on occurrence, fate, removal and ecotoxicity. Science of the Total Environment, 699, 134322. https://doi.org/10.1016/j.scitotenv.2019.134322
Ncube, S., Madikizela, L. M., Chimuka, L., & Nindi, M. M. (2018). Environmental fate and ecotoxicological effects of antiretrovirals: A current global status and future perspectives. Water Research, Vol. 145, pp. 231–247. https://doi.org/10.1016/j.watres.2018.08.017
Nibamureke, U. M. C., Barnhoorn, I. E. J., & Wagenaar, G. M. (2019). Hatching success and survival of fish early life stages in a chronic exposure to nevirapine: a case study of the Mozambique tilapia. International Journal of Environmental Health Research, 29(4), 441–456. https://doi.org/10.1080/09603123.2018.1548697
Prasse, C., Schlüsener, M. P., Schulz, R., & Ternes, T. A. (2010). Antiviral drugs in wastewater and surface waters: A new pharmaceutical class of environmental relevance? Environmental Science and Technology, 44(5), 1728–1735. https://doi.org/10.1021/es903216p
Rashed, M. N. et al. (2022). Persistent Organic Pollutants (POPs). https://doi.org/10.5772/intechopen.95151
Robson, L., Barnhoorn, I. E. J., & Wagenaar, G. M. (2017). The potential effects of efavirenz on Oreochromis mossambicus after acute exposure. Environmental Toxicology and Pharmacology, 56(September), 225–232. https://doi.org/10.1016/j.etap.2017.09.017
Schoeman, C., Dlamini, M., & Okonkwo, O. J. (2017). The impact of a Wastewater Treatment Works in Southern Gauteng, South Africa on efavirenz and nevirapine discharges into the aquatic environment. Emerging Contaminants, 3(2), 95–106. https://doi.org/10.1016/j.emcon.2017.09.001
Souza, S. J. O., Lobo, T. M., Sabino, A. L. O., Oliveira, S. B., & Costa, O. S. (2010). Decomposição dos Antirretrovirais Lamivudina e Zidovudina pelo Processo Fotofenton Assistido no Efluente de Indústria Farmoquímica. Revista Processos Químicos, 4(7), 59–67. https://doi.org/10.19142/rpq.v4i7.108
Tang, Y., Yin, M., Yang, W., Li, H., Zhong, Y., Mo, L., & Sun, X. (2019). Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. Water Environment Research, 91(10), 984–991. https://doi.org/10.1002/wer.1163
UNAIDS. (2021). Global Hiv Statistics. https://www.unaids.org/en/resources/fact-sheet
Von Sperling, M. (1996). Princípio do tratamento biológico de águas residuárias (2nd ed.). Belo Horizonte.
Whittemore, R., & Knafl, K. (2005). The integrative review: Updated methodology. Journal of Advanced Nursing, 52(5), 546–553. https://doi.org/10.1111/j.1365-2648.2005.03621.x
Zagatto, P. A., & Bertoletti, E. (2006). Ecotoxicologia aquática: princípios e aplicações (Primeira; E. Rima, Ed.). São Carlos.
Zenker, A., Cicero, M. R., Prestinaci, F., Bottoni, P., & Carere, M. (2014). Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. Journal of Environmental Management, 133, 378–387. https://doi.org/10.1016/j.jenvman.2013.12.017
Zucker, E. (1985). Acute toxicity test for freshwater invertebrates. Hazard Evaluation Division, Standard Evaluation Procedure, (June), 1–12.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Cléssius Ribeiro Souza; Matheus de Freitas Ribeiro; Míriam de Fátima Soares; Simone Furtado dos Santos; Cíntia Aparecida de Jesus Pereira; Marcos Paulo Gomes Mol; Micheline Rosa Silveira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.