Bioactive agents with biomimmetic remineralizing action
DOI:
https://doi.org/10.33448/rsd-v11i10.33006Keywords:
Biomimetics; Tooth remineralization; Dental caries.Abstract
Dental caries is considered by the WHO to be the second most common disease in the world. Considering that its action is due to enamel demineralization carried out through the metabolism of carbohydrates by dental biofilm bacteria, the use of fluoride toothpastes was established as an effective method of control. Fluoride toothpastes are an integral part of individual care to prevent caries. However, even with its proven effectiveness, there is still a prevalence of the disease. Therefore, different bioactive agents are being studied, looking for an action that is fluoride auxiliary, equivalent or even better. This review aimed to carry out a bibliographic survey of the last five years on the different bioactive agents used in the biomimetic remineralization process of different dental tissues and in the modulation of caries disease, both in vitro and in vivo studies. Different bioactive agents used for enamel remineralization were addressed in this review, including various forms of calcium phosphate as well as self-assembling peptides. Of the 275 studies found, 45 studies met the inclusion criteria and were used for this review. Published studies demonstrate the potential of different bioactive agents in the biomimetic remineralization of enamel. However, further studies are needed to further substantiate existing results and to extend and refine the application of these agents in modern oral hygiene.
References
Abou Neel, E. A., Aljabo, A., Strange, A., Ibrahim, S., Coathup, M., Young, A. M., & Mudera, V. (2016). Demineralization–remineralization dynamics in teethandbone. International journal of nanomedicine, 11, 4743.
Agustsdottir, H., Gudmundsdottir, H., Eggertsson, H., Jonsson, S. H., Gudlaugsson, J. O., Saemundsson, S. R., & Holbrook, W. P. (2010). Caries prevalence of permanent teeth: a national survey of children in Icelandusing ICDAS. Community dentistry and oral epidemiology, 38(4), 299-309.
AIHW. Dental and Oral Health Overview AustralianWelfare.(2017). AustralianWelfare Series, n.13, AUS 214.
Alkilzy, M., Tarabaih, A., Santamaria, R. M., &Splieth, C. H. (2018). Self-assembling peptide P11-4 and fluoride for regenerating enamel. Journal of dental research, 97(2), 148-154.
Amaechi, B. T., & Van Loveren, C. (2013). Fluorides and non-fluorideremineralization systems. Toothpastes, 23, 15-26.
Amaechi, B. T., AbdulAzees, P. A., Alshareif, D. O., Shehata, M. A., Lima, P. P. D. C. S., Abdollahi, A., & Evans, V. (2019). Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children. BDJ open, 5(1), 1-9.
Andersson, Ö. H., & Kangasniemi, I. (1991). Calcium phosphate for mation at the surface of bioactive glass in vitro. Journal of biomedical materials research, 25(8), 1019-1030.
Anthoney, D., Zahid, S., Khalid, H., Khurshid, Z., Shah, A. T., Chaudhry, A. A., & Khan, A. S. (2020). Effectiveness of thymoquinone and fluoridated BioACTIVEglass/nano-oxide contained dentifrices on abrasion and dentine tubules occlusion: an ex vivo study. European Journal of Dentistry, 14(01), 045-054.
Bossù, M., Saccucci, M., Salucci, A., Di Giorgio, G., Bruni, E., Uccelletti, D., & Polimeni, A. (2019). Enamel remineralization and repair results of Biomimetic Hydroxy apatite toothpaste on deciduous teeth: an effective option to fluoride toothpaste. Journal of Nanobiotechnology, 17(1), 1-13.
Cate, J. M. T. (1999). Current concept son the theories of the mechanism faction of fluoride. Acta Odontologica Scandinavica, 57(6), 325-329.
Chen, L., Yuan, H., Tang, B., Liang, K., & Li, J. (2015). Biomimetic remineralization of human enamel in the presence of polyamido amine dendrimers in vitro. Caries research, 49(3), 282-290.
da Silva, W. P. P., Lemos, C. A. A., Samara, M., Rios, B. R., Faverani, L. P., & Pellizzer, E. P. (2020). Impacted teeth “kissing molars": systematic review. Research, Society and Development, 9(9), e694997777-e694997777.
Dashper, S. G., Shen, P., Sim, C. P. C., Liu, S. W., Butler, C. A., Mitchell, H. L., & Reynolds, E. C. (2019). CPP-ACP promotes SnF2 efficacy in a polymicrobial caries model. Journalof dental research, 98(2), 218-224.
Doberdoli, D., Bommer, C., Begzati, A., Haliti, F., Heinzel-Gutenbrunner, M., &Juric, H. (2020). Randomizedclinicaltrialinvestigating self-assemblingpeptide P11-4 for treatment of early occlusal caries. Scientific reports, 10(1), 1-9.
Dye, B. A., Vargas, C. M., Fryar, C. D., Ramos‐Gomez, F., & Isman, R. (2017). Oral health status ofchildren in Los Angeles Countyand in the United States, 1999–2004. Community dentistry and oral epidemiology, 45(2), 135-144.
Earl, J. S., Leary, R. K., Muller, K. H., Langford, R. M., & Greenspan, D. C. (2011). Physical and chemical characterization of dentinsurface following treatment with Nova Mintechnology. The Journal of clinical dentistry, 22(3), 62-67.
El Moshy, S., Abbass, M. M., & El-Motayam, A. M. (2018). Biomimetic remineralization of acid etched enamel using agarose hydrogel model. F1000Research, 7.
Enax, J., & Epple, M. (2018). Synthetic hydroxyl apatite as a biomimetic oral care agent. Oral Health PrevDent, 16(1), 7-19.
Fejerskov, O., & Kidd, E. A (Eds.). (2003). Dental caries: The diseaseand its clinical management. Blackwell Munksgaard.
Gao, Y., Liang, K., Weir, M. D., Gao, J., Imazato, S., Tay, F. R., ... & Xu, H. H. (2020). Enamel remineralization via poly (amido amine) and adhesive resin containing calcium phosphate nanoparticles. Journal of Dentistry, 92, 103262.
Geeta, R. D., Vallabhaneni, S., & Fatima, K. (2020). Comparative evaluation of remineralization potential of nanohydroxyl apatite crystals, bioactive glass, casein phosphor peptide-amorphous calcium phosphate, and fluoride on initial enamel lesion (scanning gel ectronmicroscop eanalysis) – An in vitro study. Journal of Conservative Dentistry: JCD, 23(3), 275.
Han, M., Li, Q. L., Cao, Y., Fang, H., Xia, R., & Zhang, Z. H. (2017). In vivo remineralization of dentinusing an agarose hydrogel biomimetic mineralization system. Scientificreports, 7(1), 1-9.
Hemalatha, P., Padmanabhan, P., Muthalagu, M., Hameed, M. S., Rajkumar, D. I., & Saranya, M. (2020). Comparative evaluation of qualitative and quantitative remineralization potential of four different remineralizing agents in enamel using energy-dispersive X-ray: An in vitro study. Journal of Conservative Dentistry: JCD, 23(6), 604.
Hou, A., Luo, J., Zhang, M., Li, J., Chu, W., Liang, K., & Li, J. (2020). Two-in-onestrategy: a remineralizing and anti-adhesive coating against demineralized enamel. International journal of oral science, 12(1), 1-11.
Ionescu, A. C., Cazzaniga, G., Ottobelli, M., Garcia-Godoy, F., & Brambilla, E. (2020). Substituted Nano-Hydroxy apatite toothpastes reduce biofilm formation on enamel andresin-based composite surfaces. Journal of Functional Biomaterials, 11(2), 36.
Kamath, P., Nayak, R., Kamath, S. U., & Pai, D. (2017). A comparative evaluation of the remineralization potential of three commercially available remineralizing agent son white spot lesions in primary teeth: An in vitro study. Journal of Indian Society of Pedodontics and Preventive Dentistry, 35(3), 229.
Kensche, A., Holder, C., Basche, S., Tahan, N., Hannig, C., & Hannig, M. (2017). Efficacy of a mouth rinse based on hydroxyl apatite to reduce initial bacterial colonisation in situ. Archivesof oral biology, 80, 18-26.
Khandelwal, J. R., Bargale, S., Dave, B. H., Poonacha, K. S., Kariya, P. B., & Vaidya, S. (2020). Comparative evaluation of remineralising efficacy of bioactive glass agent and nano-hydroxyapatite dentifrice son artificial carious lesion in primary teeth: An in vitro study. Advances in Human Biology, 10(3), 129.
Kind, L., Stevanovic, S., Wuttig, S., Wimberger, S., Hofer, J., Müller, B., & Pieles, U. (2017). Biomimetic remineralization of carious lesions by self-assembling peptide. Journal of Dental Research, 96(7), 790-797.
Kirkham, J., Firth, A., Vernals, D., Boden, N., Robinson, C., Shore, R. C., & Aggeli, A. (2007). Self-assembling peptide scaffolds promote enamel remineralization. Journal of dental research, 86(5), 426-430.
Lelli, M., Putignano, A., Marchetti, M., Foltran, I., Mangani, F., Procaccini, M., & Orsini, G. (2014). Remineralization andrepair of enamel surface by biomimetic Zn-carbonate hydroxyl apatite containing toothpaste: a comparative in vivo study. Frontiers in physiology, 5, 333.
Li, Z., Ren, Q., Cui, J., Hu, D., Tian, T., He, T., & Zhang, L. (2020). Comparing theefficacy of hydroxyl apatitenucleationregulatedby amino acids, poly-amino acids and anamelogenin-derivedpeptide. Cryst Eng Comm, 22(22), 3814-3823.
Liang, K., Wang, S., Tao, S., Xiao, S., Zhou, H., Wang, P., & Xu, H. H. (2019). Dental remineralization via poly (amido amine) and restor ative materials containing calcium phosphate nanoparticles. Internationaljournalof oral science, 11(2), 1-12.
Lübke, A., Enax, J., Wey, K., Fabritius, H. O., Raabe, D., & Epple, M. (2016). Composites of fluoroapatite and methyl methacrylate-basedpolymers (PMMA) for biomimetic tooth replacement. Bioinspiration & Biomimetics, 11(3), 035001.
Manchery, N., John, J., Nagappan, N., Subbiah, G. K., & Premnath, P. (2019). Remineralization potential of dentifrice containing nano hydroxyapatite on artificial carious lesions of enamel: A comparative in vitro study. Dental research journal, 16(5), 310.
Marinho, V. C., Higgins, J., Logan, S., & Sheiham, A. (2003). Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane database of systematic reviews, (1).
Müller, W. E., Ackermann, M., Neufurth, M., Tolba, E., Wang, S., Feng, Q., & Wang, X. (2017). A novel biomimetic approach torepairenamel cracks/carious damages and to reseal dentinal tubules by amorphous polyphosphate. Polymers, 9(4), 120.
Najibfard, K., Ramalingam, K., Chedjieu, I., & Amaechi, B. T. (2011). Remineralization of early caries by a nano-hydroxyapatite dentifrice. Journal of Clinical Dentistry, 22(5), 139.
Paiva, S. M. D., & Cury, J. A. (2001). Dentifrício fluoretado e risco de fluorose dentária. RPG rev. pos-grad, 322-328.
Pandya, M., & Diekwisch, T. G. (2019). Enamel biomimetics—fiction or future of dentistry. International journal of oral science, 11(1), 1-9.
Reynolds, E. C. (1998). Anticariogenic complexes of amorphous calcium phosphate stabilized by casein phosphopeptides: a review. Special Care in Dentistry, 18(1), 8-16.
Saffarpour, M., Mohammadi, M., Tahriri, M., & Zakerzadeh, A. (2017). Efficacy of modified bioactive glass for dentin remineralization and obstruction of dentinal tubules. Journal of Dentistry (Tehran, Iran), 14(4), 212.
Scribante, A., DermenakiFarahani, M. R., Marino, G., Matera, C., Rodriguez y Baena, R., Lanteri, V., & Butera, A. (2020). Biomimeticeffectof nano-hydroxyapatite in demineralized enamel before orthodontic bonding of brackets and attachments: visual, adhesion strength, and hardness in vitro tests. BioMed Research International, 2020.
Selwitz, R. H., Ismail, A. I., &Pitts, N. B. (2007). Dental caries. The Lancet, 369(9555), 51-59.
Sezici, Y. L., Yetkiner, E., Yetkiner, A. A., Eden, E., & Attin, R. (2021). Comparative evaluation of fluoride varnishes, self-assembling peptide-based remineralization agent, and enamel matrixproteinderivativeon artificial enamelremineralization in vitro. Progress in Orthodontics, 22(1), 1-12.
Sharma, A., Rao, A., Shenoy, R., & Suprabha, B. S. (2017). Comparative evaluation of Nano-hydroxyapatite and casein Phosphopeptide-amorphous calcium phosphate on the remineralization potential of early enamel lesions: An in vitro study. Journal of Orofacial Sciences, 9(1), 28.
Sindhura, V., Uloopi, K. S., Vinay, C., & Chandrasekhar, R. (2018). Evaluation of enamel remineralizing potential of self-assembling peptide P11-4 on artificially induced enamel lesions in vitro. Journal of Indian Society of Pedodontics and Preventive Dentistry, 36(4), 352.
SirinKaraarslan, E., Aytaç, F., Çadirci, B. H., Ağaccioğlu, M., Taştan, E., Yilmaz, G., &CevvalÖzkoçak, B. B. (2018). Evaluation of theef fects of different remineralizing agent son Streptococcus mutans biofil madhesion. Journal of Adhesion Science and Technology, 32(23), 2617-2630.
Taneja, V., Nekkanti, S., Gupta, K., & Hassija, J. (2019). Remineralizion potential of theobromineon artificial cariouslesions. Journal of International Society of Preventive & Community Dentistry, 9(6), 576.
Thesleff, I. (2003). Developmental biology and building a tooth. Quintessence International, 34(8).
Üstün, N., & Aktören, O. (2019). Analysis of efficacy of the self‐assembling peptide‐based remineralization agenton artificial enamel lesions. Microscopy Research and Technique, 82(7), 1065-1072.
Van Loveren, C. M. C. D. N. J. M., et al. (2013). Toothpastes: Monographs in oral science. Karger: Basel, 23.
Wang, K., Wang, X., Li, H., Zheng, S., Ren, Q., Wang, Y., & Zhang, L. (2018). A statherin-derived peptide promotes hydroxyapatite crystallization and in situ remineralization of artificial enamel caries. RSC advances, 8(3), 1647-1655.
Wierichs, R. J., Kogel, J., Lausch, J., Esteves-Oliveira, M., & Meyer-Lueckel, H. (2017). Effectsof self-assemblingpeptide P11-4, fluorides, and caries infiltrationon artificial enamel caries lesions in vitro. Caries research, 51(5), 451-459.
Xiao, Z., Que, K., Wang, H., An, R., Chen, Z., Qiu, Z., & Zhang, X. (2017). Rapid biomimetic remineralization of the demineralized enamel surface using nano-particles of amorphous calcium phosphate guided by chimaeric peptides. Dental Materials, 33(11), 1217-1228.
Zaharia, A., Muşat, V., Anghel, E. M., Atkinson, I., Mocioiu, O. C., Buşilă, M., & Pleşcan, V. G. (2017). Biomimetic chitosan-hydroxyapatite hybrid biocoatings for enamel remineralization. Ceramics International, 43(14), 11390-11402.
Zhang, X., & Deng, X. (2015). Chapter Nanotechnology in Endodontics: Current and Potential Clinical Applications. Switzerland: Springer International Publishing, 173-193.
Zhou, Z., Ge, X., Bian, M., Xu, T., Li, N., Lu, J., & Yu, J. (2020). Remineralization of dentin slicesusing casein phosphopeptide–amorphous calcium phosphate combined with sodium tri polyphosphate. Biomedical engineering online, 19(1), 1-13.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Pedro Luis dos Santos Tomaz; Marcio Luiz dos Santos; Regina Mara Silva Pereira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.