HIV elite controller: case report
DOI:
https://doi.org/10.33448/rsd-v11i10.33057Keywords:
HIV; HIV antibodies; Carrier state; Acquired immunodeficiency syndrome; Case reports.Abstract
The objective of the study is to report the case of a female patient with double sorological confirmation in rapid tests for anti-HIV antibodies for more 10 years, being follow up by the Service Specialized Attendance/Testing and Counseling Center, who never showed signs of clinical disease progression and maintain an undetectable viral load even in the absence of any antirretroviral therapy. A case of great relevance for the scientific community, given the rarity of the clinical evolution presented and the morbidity and mortality of this type of infection in Brazil, since according to data from the Ministry of Health the number of infected is close to 1 million. The possibility of natural control of human immunodediciency virus (HIV) infection without antiretroviral therapy, such as the one reported in the case, opens perspectives for understanding the specific immunological and biomolecular mechanisms involved in protection and for the possibility of a spontaneous functional cure of the infection.
References
Abdel-Mohsen, M., Raposo, R. A., Deng, X., Li, M., Liegler, T., Sinclair, E., Salama, M. S., Ghanem, H., Hoh, R., Wong, J. K., David, M., Nixon, D. F., Deeks, S. G., & Pillai, S. K. (2013). Expression profile of host restriction factors in HIV-1 elite controllers. Retrovirology, 10, 106. https://doi.org/10.1186/1742-4690-10-106
Balog, K., & Minarovits, J. (2006). Nef: a pleiotropic modulator of primate lentivirus infectivity and pathogenesis. Acta microbiologica et immunologica Hungarica, 53(1), 51–75. https://doi.org/10.1556/AMicr.53.2006.1.4
Boritz, E. A., Darko, S., Swaszek, L., Wolf, G., Wells, D., Wu, X., Henry, A. R., Laboune, F., Hu, J., Ambrozak, D., Hughes, M. S., Hoh, R., Casazza, J. P., Vostal, A., Bunis, D., Nganou-Makamdop, K., Lee, J. S., Migueles, S. A., Koup, R. A., Connors, M., & Douek, D. C. (2016). Multiple Origins of Virus Persistence during Natural Control of HIV Infection. Cell, 166(4), 1004–1015. https://doi.org/10.1016/j.cell.2016.06.039
Deeks, S. G., & Walker, B. D. (2007). Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity, 27(3), 406–416. https://doi.org/10.1016/j.immuni.2007.08.010
Hartana, C. A., & Yu, X. G. (2021). Immunological effector mechanisms in HIV-1 elite controllers. Current opinion in HIV and AIDS, 16(5), 243–248. https://doi.org/10.1097/COH.0000000000000693
Li, J. Z., & Blankson, J. N. (2021). How elite controllers and posttreatment controllers inform our search for an HIV-1 cure. The Journal of clinical investigation, 131(11), e149414. https://doi.org/10.1172/JCI149414
Kamya, P., Boulet, S., Tsoukas, C. M., Routy, J. P., Thomas, R., Côté, P., Boulassel, M. R., Baril, J. G., Kovacs, C., Migueles, S. A., Connors, M., Suscovich, T. J., Brander, C., Tremblay, C. L., Bernard, N., & Canadian Cohort of HIV Infected Slow Progressors (2011). Receptor-ligand requirements for increased NK cell polyfunctional potential in slow progressors infected with HIV-1 coexpressing KIR3DL1*h/*y and HLA-B*57. Journal of virology, 85(12), 5949–5960. https://doi.org/10.1128/JVI.02652-10
Lécuroux, C., Sáez-Cirión, A., Girault, I., Versmisse, P., Boufassa, F., Avettand-Fenoël, V., Rouzioux, C., Meyer, L., Pancino, G., Lambotte, O., Sinet, M., & Venet, A. (2014). Both HLA-B*57 and plasma HIV RNA levels contribute to the HIV-specific CD8+ T cell response in HIV controllers. Journal of virology, 88(1), 176–187. https://doi.org/10.1128/JVI.02098-13
Migueles, S. A., Chairez, C., Lin, S., Gavil, N. V., Rosenthal, D. M., Pooran, M., Natarajan, V., Rupert, A., Dewar, R., Rehman, T., Sherman, B. T., Adelsberger, J., Leitman, S. F., Stroncek, D., Morse, C. G., Connors, M., Lane, H. C., & Kovacs, J. A. (2019). Adoptive lymphocyte transfer to an HIV-infected progressor from an elite controller. JCI insight, 4(18), e130664. https://doi.org/10.1172/jci.insight.130664
Mwimanzi, P., Markle, T. J., Martin, E., Ogata, Y., Kuang, X. T., Tokunaga, M., Mahiti, M., Pereyra, F., Miura, T., Walker, B. D., Brumme, Z. L., Brockman, M. A., & Ueno, T. (2013). Attenuation of multiple Nef functions in HIV-1 elite controllers. Retrovirology, 10, 1. https://doi.org/10.1186/1742-4690-10-1
Noel, N., Lerolle, N., Lécuroux, C., Goujard, C., Venet, A., Saez-Cirion, A., Avettand-Fenoël, V., Meyer, L., Boufassa, F., Lambotte, O., & ANRS C021 CODEX Study Group (2015). Immunologic and Virologic Progression in HIV Controllers: The Role of Viral "Blips" and Immune Activation in the ANRS CO21 CODEX Study. PloS one, 10(7), e0131922. https://doi.org/10.1371/journal.pone.0131922
Pastori, C., Weiser, B., Barassi, C., Uberti-Foppa, C., Ghezzi, S., Longhi, R., Calori, G., Burger, H., Kemal, K., Poli, G., Lazzarin, A., & Lopalco, L. (2006). Long-lasting CCR5 internalization by antibodies in a subset of long-term nonprogressors: a possible protective effect against disease progression. Blood, 107(12), 4825–4833. https://doi.org/10.1182/blood-2005-06-2463
Pereira A. S., et al. (2018). Metodologia da pesquisa científica. [free e-book]. Santa Maria/RS. Ed. UAB/NTE/UFSM.
Porichis, F., & Kaufmann, D. E. (2011). HIV-specific CD4 T cells and immune control of viral replication. Current opinion in HIV and AIDS, 6(3), 174–180. https://doi.org/10.1097/COH.0b013e3283454058
Shi, Y., Su, J., Chen, R., Wei, W., Yuan, Z., Chen, X., Wang, X., Liang, H., Ye, L., & Jiang, J. (2022). The Role of Innate Immunity in Natural Elite Controllers of HIV-1 Infection. Frontiers in immunology, 13, 780922. https://doi.org/10.3389/fimmu.2022.780922
UNAIDS. (2021). Relatório informativo – Atualização global da AIDS 2021. Programa Conjunto das Nações Unidas sobre HIV/AIDS UNAIDS.
Vergis, E. N., & Mellors, J. W. (2000). Natural history of HIV-1 infection. Infectious disease clinics of North America, 14(4), 809–vi. https://doi.org/10.1016/s0891-5520(05)70135-5
Visseaux, B., Le Hingrat, Q., Damond, F., Charpentier, C., & Descamps, D. (2019). Physiopathologie de l’infection par le VIH-2 [Physiopathology of HIV-2 infection]. Virologie (Montrouge, France), 23(5), 277–291. https://doi.org/10.1684/vir.2019.0789
Wolf, E., & Noe, S. (2020). Antivirale Therapie der Zukunft: Was ist in der Pipeline? : HIV-Therapie [Future prospects of antiviral HIV therapy: what is in the pipeline?]. MMW Fortschritte der Medizin, 162(Suppl 2), 50–54. https://doi.org/10.1007/s15006-020-0647-9
Zhou, X. J., Zhu, Q. Y., Li, J. J., Lan, G. H., Liang, S. S., Liu, S. F., Liu, X. H., Meng, Q., Zhou, C. X., & Shen, Z. Y. (2019). Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi, 40(1), 70–73. https://doi.org/10.3760/cma.j.issn.0254-6450.2019.01.014
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Iury Venâncio Pinheiro; Heitor Contato Poliseli; Gustavo Marques Costa; Rosana Alves Vieira Carneiro; Cândida Aparecida Leite Kassuya
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.