A method based on pix2pix to attenuate bias in the analysis of wound healing assays

Authors

DOI:

https://doi.org/10.33448/rsd-v11i12.34271

Keywords:

Machine learning; Cell migration; Automated analysis; CGAN.

Abstract

The advances of new technologies in the machine learning area have led to the development of conditional generative adversarial networks with the direct use of images, such as is the case of the pix2pix model. A potential application for the pix2pix model discussed in this work is the analysis of images of wound healing or scratch assays that are widely used to evaluate in vitro cell migration. The most common way to evaluate the results of the wound healing assay is by manually detecting the wound area in the image, separating the empty area and the area occupied by cells, during 24, 48 or even 72 h. Although this procedure has for long been presented in the literature, it has been indicated that it lacks objectivity, it is time-consuming, and it leads to data misinterpretation. In an attempt to overcome the lack of robustness and consistency showed by the manual evaluation, this work aims to implement a method based on pix2pix to reduce bias in wound healing analysis, while introducing a new point of view of the images analysis. Manually introduced bias in the image processing algorithm presented deviations of up to 15 % when slightly varying a single variable, while the image processing performed by the model resulted in deviations mostly within 6 % when compared with manual analysis.

References

Abdelmotaal, H., Abdou, A. A., Omar, A. F., El-Sebaity, D. M., & Abdelazeem, K. (2021). Pix2pix conditional generative adversarial networks for scheimpflug camera color-coded corneal tomography image generation. Translational Vision Science & Technology. 10(7), 21. https://doi.org/10.1167/tvst.10.7.21

Auerbach, R., Auerbach, W., & Polakowski, I. (1991). Assays for angiogenesis: A review. Pharmacology & Therapeutics. 51(1), 1-11. https://doi.org/10.1016/0163-7258(91)90038-n

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI. 8(6), 679-698. https://doi.org/10.1109/tpami.1986.4767851

Choudhury, G. R., Ryou, M.-G., Poteet, E., Wen, Y., He, R., Sun, F., Yuan, F., Jin, K., & Yang, S.-H. (2014). Involvement of p38 MAPK in reactive astrogliosis induced by ischemic stroke. Brain Research. 1551, 45-58. https://doi.org/10.1016/j.brainres.2014.01.013

Favretto, G., da Cunha, R. S., Santos, A. F., Leitolis, A., Schiefer, E. M., Gregorio, P. C., Franco, C. R. C., Massy, Z., Dalboni, M. A., & Stinghen, A. E. M. (2021). Uremic endothelial-derived extracellular vesicles: Mechanisms of formation and their role in cell adhesion, cell migration, inflammation, and oxidative stress. Toxicology Letters. 347, 12-22. https://doi.org/10.1016/j.toxlet.2021.04.019

Geback, T., Schulz, M. M. P., Koumoutsakos, P., & Detmar, M. (2009). TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. BioTechniques. 46(4), 265-274. https://doi.org/10.2144/000113083

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM. 63(11), 139-144. https://doi.org/10.1145/3422622

Guo, S., & DiPietro, L. A. (2010). Factors a ecting wound healing. Journal of Dental Research. 89(3), 219-229. https://doi.org/10.1177/0022034509359125

Ieso, M. L. D., & Pei, J. V. (2018). An accurate and cost-effective alternative method for measuring cell migration with the circular wound closure assay. Bioscience Reports. 38(5). https://doi.org/10.1042/bsr20180698

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A.A. (2017). Image-to-image translation with conditional adversarial networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2017.632. https://doi.org/10.1109/cvpr.2017.632

Jonkman, J. E. N., Cathcart, J. A., Xu, F., Bartolini, M. E., Amon, J. E., Stevens, K. M., & Colarusso, P. (2014). An introduction to the wound healing assay using live-cell microscopy. Cell Adhesion & Migration. 8(5), 440-451. https://doi.org/10.4161/cam.36224

Justus, C. R., Leffler, N., Ruiz-Echevarria, M., & Yang, L. V. (2014). In vitro cell migration and invasion assays. Journal of Visualized Experiments. (88). https://doi.org/10.3791/51046

Mirza, M., & Osindero, S. (2014). Conditional Generative Adversarial Nets. arXiv. https://doi.org/10.48550/ARXIV.1411.1784.

Monsuur, H. N., Boink, M. A., Weijers, E. M., Roel, S., Breetveld, M., Gefen, A., van den Broek, L. J., & Gibbs, S. (2016). Methods to study differences in cell mobility during skin wound healing in vitro. Journal of Biomechanics. 49(8), 1381-1387. https://doi.org/10.1016/j.jbiomech.2016.01.040

Mouritzen, M. V. ,& Jenssen, H. (2018). Optimized scratch assay for in vitro testing of cell migration with an automated optical camera. Journal of Visualized Experiments. (138). https://doi.org/10.3791/57691

Nunes, J. P. S., & Dias, A. A. M. (2017). ImageJ macros for the user-friendly analysis of soft-agar and wound-healing assays. BioTechniques. 62(4), 175-179. https://doi.org/10.2144/000114535

Rodrigues, M., Kosaric, N., Bonham, C. A., & Gurtner, G. C. (2019). Wound healing: A cellular perspective. Physiological Reviews. 99(1), 665-706. https://doi.org/10.1152/physrev.00067.2017

Tonnesen, M. G., Feng, X., & Clark, R. A. F. (2000). Angiogenesis in wound healing. Journal of Investigative Dermatology Symposium Proceedings. 5(1), 40-46. https://doi.org/10.1046/j.1087-0024.2000.00014.x

Velnar, T., & Gradisnik, L. (2018). Tissue augmentation in wound healing: the role of endothelial and epithelial cells. Medical Archives. 72(6), 444. https://doi.org/10.5455/medarh.2018.72.444-448

Zordan, M. D., Mill, C. P., Riese, D. J., & Leary, J. F. (2011). A high throughput, interactive imaging, bright-field wound healing assay. Cytometry Part A. 79A(3), 227-232. https://doi.org/10.1002/cyto.a.21029

Downloads

Published

09/09/2022

How to Cite

SCHIEFER, E. M.; SANTOS, A. F.; CUNHA, R. S. da .; MULLER, M.; STINGHEN, A. E. M. .; FABRIS, J. L. .; NEGRI, L. H. . A method based on pix2pix to attenuate bias in the analysis of wound healing assays. Research, Society and Development, [S. l.], v. 11, n. 12, p. e125111234271, 2022. DOI: 10.33448/rsd-v11i12.34271. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/34271. Acesso em: 25 nov. 2024.

Issue

Section

Health Sciences