Development of gelatin nanoparticles for the treatment of pathologies caused by Paraccocideoides brasiliensis
DOI:
https://doi.org/10.33448/rsd-v11i12.34460Keywords:
Paraccocideoides brasiliensis; Drug delivery system; Amphotericin B; Nanoparticles.Abstract
Introduction: Paraccocideoides brasiliensis (Pb) is a fungal pathology that causes serious lesions in the mouth in the form of ulcerations that destroy the gingiva, palate, reflecting on the immune system. For the treatment of Paracoccidioidomycosis (PMC) the choice of drug is based on the degree of the disease, with Amphotericin B (AB) being the most used due to its mechanism of action and interaction with the fungal membrane, causing its destruction. However, with all the history of AB toxicity, there is a need to reduce the serum levels of the drug in the body. The use of nanoparticles as controlled release systems (DDS) is an alternative for this purpose. The objective of this article was to develop gelatin nanoparticles for the treatment of pathologies caused by Pb. Method: In this work, gelatin nanoparticles were processed by the two-step desolvation method and loaded with AB. The nanoparticulate system was characterized by scanning electron microscopy (SEM) and dynamic light scattering (DLS). Finally, the effectiveness of DDS was evaluated against Pb yeasts by Disk Diffusion Test. Results: the synthesized particles presented suitable sizes and shapes for application in DDS with an average size of 169.4 and 172.0 nm, for the free and encapsulated system, respectively. Biological model tests of Pb showed positive results indicating that lower concentrations of AB can be efficiently administered if nanostructured DDS is used. Conclusion: This study is promising for future applications of AB-loaded gelatin nanoparticles for the treatment of pathologies caused by Paraccocideoides brasiliensis.
References
Ahsan, S. M. & Rao, C. M. (2017a). The role of surface charge in the desolvation process of gelatin: implications in nanoparticle synthesis and modulation of drug release. International Journal of Nanomedicine. 12, 795-808.
Ahsan, S. M.& Rao, C. M. (2017b). Structural studies on aqueous gelatin solutions: Implications in designing a thermo-responsive nanoparticulate formulation. International Journal of Biological Macromolecules. 95, 1126-1134.
Alonso, L., Rocha, O. B., de Carvalho Junior, M. A. B., Soares, C. M. A., Pereira, M.& Alonso, A. (2022). Paracoccidioides brasiliensis plasma membrane characterization by EPR spectroscopy and interactions with amphotericin B, miltefosine and nerolidol, Journal of Biomolecular Structure and Dynamics. doi: 10.1080/07391102.2022.2093274
Amaral, A. C., Bocca, A.A. L., Ribeiro, A. M., Nunes, J., Peixoto, D. L. G., Simioni, A. R., Primo, F. L., Lacava, Z. G. M., Azevedo, R. B., Titze-de-Almeida, R., Tedesco, A. C., Morais, P.C. & Felipe, M. S. S. (2009). Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis, Journal of Antimicrobial Chemotherapy. 63, 526-533.
Ambrósio, A. V. A., Camelo, C. C. S., Barbosa, C. V., Brazões, F. A. S., Rodrigues, L. F., Aguiar, R. A., Siqueira, V. S., Jardim, V. B., de Moura, A. C. L., Santos, L. S., da Cruz, S. D., Siqueira, W. C., Rocha-Silva, F., Caligiorne, R. B., Góes, A. M. & Pedroso, E. R. P. (2014). Paracoccidioidomycosis (Lutz-Splendore-Almeida disease): treatment, duration of treatment, recurrence, paradoxical reaction, prognosis, prophylaxis. Revista Médica de Minas Gerais. 24, 71-77.
Ambrosio, J. A. R., Pinto, B. C. S., Godoy, D. S., Carvalho, J. A., Abreu, A. S., da Silva, B. G. M., Leonel, L. C., Costa, M. S., Beltrame Junior, M. & Simioni, A. R. (2019). Gelatin nanoparticles loaded methylene blue as a candidate for photodynamic antimicrobial chemotherapy applications in Candida albicans growth. Journal of Biomaterials Science, Polymer Edition, 30, 1356-1373.
Araújo, M. V., Dos Santos Júnior, S. R., Nosanchuk, J. D. & Taborda, C. P. (2020). Therapeutic Vaccination with Cationic Liposomes Formulated with Dioctadecyldimethylammonium and Trehalose Dibehenate (CAF01) and Peptide P10 Is Protective in Mice Infected with Paracoccidioides brasiliensis. Journal of Fungi, 6, 347-362.
Azimi, B., Nourpanah, P., Rabiee, M. & Arbab, S. (2014). Producing Gelatin Nanoparticles as Delivery System for Bovine Serum Albumin. Iranian Biomedical Journal, 18, 34–40.
Baghirova, A. A. & Kasumov, K. M. (2021). Antifungal macrocycle antibiotic amphotericin B - its present and future. Multidisciplinary perspective for the use in the medical practice. Biomeditsinskaya Khimiya, 67, 311-322.
Borges, S. R. C., da Silva, G. M. S., Chambela, M. C., de Oliveira, R. V. C., Costa, R. L. B., Wanke, B. & do Valle, A. C. F. (2014). Itraconazole vs. trimethoprim-sulfamethoxazole: A comparative cohort study of 200 patients with paracoccidioidomycosis, Journal of Medical Mycology, 52, 303-310.
Carvalho, J. A., Abreu, A. S., Ferreira, V. T. P., Gonçalves, E. P., Tedesco, A. C., Pinto, J. G., Ferreira-Strixino, J., Beltrame Junior, M. & Simioni, A. R. (2018). Preparation of gelatin nanoparticles by two step desolvation method for application in photodynamic therapy. Journal of Biomaterials Science, Polymer Edition, 29, 1287-1301.
Cunha-Azevedo, E. P., Py-Daniel, K. R., Siqueira-Moura, M. P., Bocca, A. L., Felipe, M. S. S., Tedesco, A. C., Pires Junior, O. R. , Lucci, C. M. & Azevedo, R. B. (2018). In vivo evaluation of the efficacy, toxicity and biodistribution of PLGA-DMSA nanoparticles loaded with itraconazole for treatment of paracoccidioidomycosis, Journal of Drug Delivery Science and Technology, 45, 135-141.
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh, F. D., Javanmard, R., Dokhani, A., Khorasani, S. & Mozafari, M. R. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10, 57-73.
de Souza, C., Carvalho, J. A. , Abreu, A. S., de Paiva, L. P. , Ambrósio, J. A. R., Beltrame Junior, M., de Oliveira, M. A., Mittmann, J. & Simioni, A. R. (2021). Polyelectrolytic gelatin nanoparticles as a drug delivery system for the promastigote form of Leishmania amazonensis treatment. Journal of Biomaterials Science, Polymer Edition, 32, 1-21.
Geraili, A., Xing, M. & Mequanint, K. (2021). Design and fabrication of drug-delivery systems toward adjustable release profiles for personalized treatment. View, 2, 1-24.
Ghosh, S., Das, S., De, A. K., Kar, N. & Bera, T. (2017). Amphotericin B-loaded mannose modified poly(D,L-lactide-co-glycolide) polymeric nanoparticles for the treatment of visceral leishmaniasis: in vitro and in vivo approaches. RSC Advances, 7, 29575-29590.
Graziola, F., Candido, T. M., de Oliveira, C. A., Peres, D. D., Issa, M. G., Mota, J., Rosado, C., Consiglieri, V. O., Kaneko, T. M., Velasco, M. V. R. & Baby, A. R. (2016). Gelatin-based microspheres crosslinked with glutaraldehyde and rutin oriented to cosmetics. Brazilian Journal of Pharmaceutical Sciences, 52, 603-612.
Griffiths, J., Colombo, A. L. & Denning D. W. (2019). The case for paracoccidioidomycosis to be accepted as a neglected tropical (fungal) disease. PLOS Neglected Tropical Diseases, 13, e0007195-e0007204.
Hahn, R. C. & Hamdan, J. S. (2000). Effects of Amphotericin B and Three Azole Derivatives on the Lipids of Yeast Cells of Paracoccidioides brasiliensis. Antimicrobial Agents and Chemotherapy, 44, 1997-2000.
Hong, S., Choi, D. W., Kim, H. N., Park, C. G., Lee, W. & Park, H. H. (2020). Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics, 12, 604-632.
Jannuzzi, G. P., Souza, N. A., Françoso, K. S., Pereira, R. H., Santos, R. P., Kaihami, G. H., de Almeida, J. R. F., Batista, W. L., Amaral, A. C., Maranhão, A. Q., de Almeida, S. R. & Ferreira, K. S. (2018). Therapeutic treatment with scFv-PLGA nanoparticles decreases pulmonary fungal load in a murine model of paracoccidioidomycosis. Microbes and Infection, 20, 48-56.
Joy, J., Gupta, A., Jahnavi, S., Verma, R. S., Ray, A. R. & Gupta, B. (2016). Understanding the in situ crosslinked gelatin hydrogel. Polymer International, 65, 181–191.
Kamiński, D. M. (2014). Recent progress in the study of the interactions of amphotericin B with cholesterol and ergosterol in lipid environments. European Biophysics Journal, 43, 453–467.
Lee, H. & Lee, D. G. (2018). Novel Approaches for Efficient Antifungal Drug Action. Journal of Microbiology and Biotechnology, 28, 1771-1781.
Mahajan, V. K. (2014). Sporotrichosis: An Overview and Therapeutic Options, Dermatology Research and Practice, 2014, 1-13.
Mendes, G., Baltazar, L.M., Souza, D.G., Sá, N.P., Rosa, L.H., Rosa, C.A., Souza-Fagundes, E.M., Ramos, J.P., Alves-Silva, J., Cota, B.B. & Johann, S. (2018). Effects of cytochalasin E on Paracoccidioides brasiliensis. Journal of Applied Microbiology, 125, 1296-1307.
Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A. & Langer, R. (2021) Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20, 101-124.
Orofino-Costa, R., de Macedo, P. M. & Rodrigues, A. M. (2017). Sporotrichosis: an update on epidemiology, etiopathogenesis, laboratory and clinical therapeutics. Anais Brasileiros de Dermatologia, 92, 606-620.
Pompeu, L. D., Pinton, A. P., Finger, M. G., Cadó, R. G., Severo, V. A., Pinheiro, L. & Bulhões, L. O. (2018). Evaluation of stability of aqueous dispersions using zeta potential data. Revista Disciplinarum Scientia. Série Ciências da Saúde, 19, 381-388.
Saqib, M., Bhatti, A. S. A., Ahmad, N. M., Ahmed, N., Shahnaz, G., Lebaz, N. & Elaissari, A. (2020). Amphotericin B Loaded Polymeric Nanoparticles for Treatment of Leishmania Infections, Nanomaterials (Basel), 10, 1152-1167.
Satar, R., Jafri, M. A., Rasool, M. & Ansari, S. A. (2017). Role of Glutaraldehyde in Imparting Stability to Immobilized β-Galactosidase Systems. Brazilian Archives of Biology and Technology., 60, e17160311- e17160322.
Shamarekh, K. S., Gad, H. A., Soliman, M. E. & Sammour, O. A. (2020). Towards the production of monodisperse gelatin nanoparticles by modified one step desolvation technique. Journal of Pharmaceutical Investigation, 50, 189–200.
Sheskin, T., Geyer, O., Lotan, N. & Sivan, S. S. (2021). Controlled and time-scheduled drug delivery: Polyanhydride-based nanoparticles as ocular medication carriers. Polymers for Advanced Technologies, 32, 1–9.
Subara, D., Jaswir, I., Alkhatib, M. F. R. & Noorbatcha, I. A. (2018). Synthesis of fish gelatin nanoparticles and their application for the drug delivery based on response surface methodology. Advances in Natural Sciences: Nanoscience and Nanotechnology,9, 1-12.
Trindade, A. C., de Castro, P. A. R. R., Pinto, B. C. S., Ambrósio, J. A. R., de Oliveira Junior, B. M. , Beltrame Junior, M. Gonçalves, E. P., Pinto, J. G., Ferreira-Strixino, J. & Simioni, A. R. (2022). Gelatin nanoparticles via template polymerization for drug delivery system to photoprocess application in cells. Journal of Biomaterials Science, Polymer Edition, 33, 551-568.
Turissini, D. A., Gomez, O. M., Teixeira, M. M., McEwen,J. G. & Matute, D. R. (2017). Species boundaries in the human pathogen Paracoccidioides. Fungal Genetics and Biology, 106, 9–25.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Aline Cristiane de Oliveira Silva; Thainara Alves Gouvea; Jéssica Aparecida Ribeiro Ambrósio; Milton Beltrame Junior; Priscila Maria Sarmeiro Correa Marciano Leite; Flavia Villaça Morais; Andreza Ribeiro Simioni; Erika Peterson Gonçalves
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.