Antibiotic potential of silver nanoparticles stabilized in hydroalcoholic extract of matruz (Chenopodium ambrosioides)

Authors

DOI:

https://doi.org/10.33448/rsd-v11i13.35101

Keywords:

Bacterial drug resistance; Metal nanoparticles; Chenopodium ambrosioides.

Abstract

Bacterial resistance is one of the biggest global health challenges, impacting around 700.000 deaths per year, in addition to dramatic consequences in the hospital and social spheres. Although it is a growing and highly threatening problem, the number of effective drugs available to combat these superbugs is increasingly limited, making the importance of the search for new options for antibiotic therapy emphatic. This study aimed to produce silver nanoparticles stabilized in hydroalcoholic extract of mastruz; to characterize them through of Visible Ultraviolet (UV- Vis); evaluate the stability of silver nanoparticles after 48h and 72h; characterize the hydroalcoholic extract of mastruz through spectrophotometric study and analyze the bactericidal potential of silver nanoparticles. Silver nanoparticles were developed through green synthesis, later characterized by Spectrophotometric Visible Ultraviolet (UV- Vis) and applied to cultures of Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa e Klebsiella pneumoniae) and Gram positive (Staphylococcus aureus). The nanoparticles were produced through green synthesis, showed a maximum absorption peak of 400 nm in the spectrophotometric study, and they remained stable after 48h and 72h. The hydroalcoholic extract of mastruz showed two peaks of maximum absorption (332 nm and 674 nm) in the spectrophotometric analysis. Also, the bactericidal activity of the silver nanoparticles was observed, through the presence of inhibition halos of approximately 14 mm in the tested cultures.

References

Ávila-Blanco, M. E., Rodríguez, M. G., Moreno Duque, J. L., Muñoz-Ortega, M., & Ventura-Juárez, J. (2014). Amoebicidal activity of essential oil of dysphania ambrosioides (L.) mosyakin & clemants in an amoebic liver abscess hamster model. Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/930208

Barros, L., Pereira, E., Calhelha, R. C., Duenas, M., Carvalho, A. M., Santos-Buelga, C., & Ferreira, I. C. F. R. (2013). Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. Jounal of Functional Foods, 5, 1732–1740. https://doi.org/10.1016j/j-jff.2013.07.019

Bezerra, J. W. A., Costa, A. R., Freitas, M. A. de, Rodrigues, F. C., Souza, M. A., Silva, A. R. P., Santos, A. T. L. dos, Linhares, K. V., Coutinho, H. D. M., Silva, J. R. L., & Morais-Braga, M. F. B. (2019). Chemical composition, antimicrobial, modulator and antioxidante activity of essential oil of Dysphania ambrosioides (L.). Comparative Immunology, Microbiology and Infectious Diseases, 65, 58–64. https://doi.org/10.1016/j.cimid.2019.04.010

Boutkhil, S., el Idrissi, M., Amechrouq, A., Chbicheb, A., Chakir, S., & el Badaoui, K. (2009). Chemical composition and antimicrobial activity of crude, aqueous, ethanol extracts and essential oils of Dysphania ambrosioides (L.) Mosyakin & Clemants. Acta Botanica Gallica, 156(2), 201–209. https://doi.org/10.1080/12538078.2009.10516151

Burt, S. (2004). Essential oils: their antibacterial properties andpotencial applications in foods-a review. International Journal of Food Microbiology, 94, 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

Cavassin, E. D., de Figueiredo, L. F. P., Otoch, J. P., Seckler, M. M., de Oliveira, R. A., Franco, F. F., Marangoni, V. S., Zucolotto, V., Levin, A. S. S., & Costa, S. F. (2015). Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of Nanobiotechnology, 13(1). https://doi.org/10.1186/s12951-015-0120-6

CLSI. (2009). Performance standards for antimicrobial disk susceptibility tests; approved standard-tenth edition M02-A10. v. 29, n. 1. Clinical and Laboratory Standards Institute.

de Brito, J. E., Viana, D. dos S. F., Viana, V. G. F., & de Figueirêdo, G. S. (2022). Ação antimicrobiana das nanopartículas de prata (AgNPs) estabilizadas em extrato de jurema preta (Mimosa tenuiflora (Willd.,) Poir.). Research, Society and Development, 11(8), 1–7. https://doi.org/10.33448/res-v11i8.30617

de Brito, J. E., Viana, D. dos S. F., & Viana, V. G. F. V. (2022). Síntese verde e caracterização de nanopartículas de prata AgNp estabilizadas em extrato de jurema preta (Mimosa Tenuiflora). Research Society and Development, 11(6), 1–8. https://doi.org/10.33448/rsd-v11i6.29051

de Queiroz, A. C., de Lima Matos Freire Dias, T., da Matta, C. B. B., Cavalcante Silva, L. H. A., de Araújo-Júnior, J. X., de Araújo, G. B., de Barros Prado Moura, F., & Alexandre-Moreira, M. S. (2014). Antileishmanial activity of medicinal plants used in endemic areas in Northeastern Brazil. Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/478290

Gois, M. A. F., Lucas, F. C. A., Costa, J. C. M., Moura, P. H. B., & Lobato, G. J. M. (2016). Etnobotânica de espécies vegetais medicinais no tratamento de transtornos do sistema gastrointestinal. Revista Brasileira de Plantas Medicinais, 18(2), 547–557. https://doi.org/10.1590/1983-084X/15_170

Grassi, L. T., Malheiros, A., Meyre-Silva, C., Buss, Z. S., Monguilhott, E. D., Frode, T. S., & Silva, K. A. B. S. da. (2013). From popular use to pharmacological validation: a study of the anti- inflamatory, anti- nociceptive and healing effects of Chenopodium ambrosioides extract. Journal of Ethopharmacology, 145, 1217–138. https://doi.org/10.1016j/j.jep.2012.10.040

Hajtuch, J., Hante, N., Tomczyk, E., Wojcik, M., Radomski, M. W., Santos-Martinez, M. J., & Inkielewicz-Stepniak, I. (2019). Effects of functionalized silver nanoparticles on aggregation of human blood platelets. International Journal of Nanomedicine, 14, 7399–7417. https://doi.org/10.2147/IJN.S213499

Jesus, R. S., Piana, M., Freitas, R. B., Brum, T. F., Alves, C. F. S., Belke, B. V., Mossmann, N. J., Cruz, R. C., Santos, R. C. v., Dalmolin, T. V., Bianchini, B. V., Campos, M. M. A., & Bauermann, L. de F. (2018). In vitro antimicrobialand antimucobacterial activity and HPLC- DAD screening of phenolics from Chenopodium ambrosioides L. Brazilian Journal of Microbiology, 2018, 296–302. https://doi.org/10.1016/j.bjm.2017.02.012

Knauth, P., Acevedo-Hernández, G. J., Cano, M. E., Gutiérrez-Lomelí, M., & López, Z. (2018). In Vitro Bioactivity of Methanolic Extracts from Amphipterygium adstringens (Schltdl.) Schiede ex Standl., Chenopodium ambrosioides L., Cirsium mexicanum DC., Eryngium carlinae F. Delaroche, and Pithecellobium dulce (Roxb.) Benth. Used in Traditional Medicine in Mexico. Evidence-Based Complementary and Alternative Medicine, 2018. https://doi.org/10.1155/2018/3610364

Lee, S. H., & Jun, B. H. (2019). Silver nanoparticles: Synthesis and application for nanomedicine. In International Journal of Molecular Sciences 20(4). MDPI AG. https://doi.org/10.3390/ijms20040865

Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. v., Li, D., & Alverez, P. J. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial Control: potential applications and implications. Water Research, 42, 4591–5602. https://doi.org/10.1016/j.watres.2008.08.015

Lkhagvajav, N., Yaşa, I., Çelik, E., Koizhaiganova, M., & Sari, Ö. (2011). Antimicrobial activity of colloidal silver nanoparticles prepared by sol gel method. Digest Journal of Nanomaterials and Biostructures, 6(1), 149–154.

Lobanovska, M., & Pilla, G. (2017). Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? Yale Journal of Biology and Medicine, 90, 135–145.

Mallmann, E. J. J., Cunha, F. A., Castro, B. N. M. F., Maciel, A. M., Menezes, E. A., & Fechine, P. B. A. (2015). Antifungal activity of silver nanoparticles obtained by green synthesis. Revista Do Instituto de Medicina Tropical de Sao Paulo, 57(2), 165–167. https://doi.org/10.1590/S0036-46652015000200011

Mathur, P., Jha, S., Ramteke, S., & Jain, N. K. (2018). Pharmaceutical aspects of silver nanoparticles. In Artificial Cells, Nanomedicine and Biotechnology (Vol. 46, Issue sup1, pp. 115–126). Taylor and Francis Ltd. https://doi.org/10.1080/21691401.2017.1414825

Nandi, S. K., Shivaram, A., Bose, S., & Bandyopadhyay, A. (2018). Silver nanoparticle deposited implants to treat osteomyelitis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 106(3), 1073–1083. https://doi.org/10.1002/jbm.b.33910

Nascimento, F. R. F., Cruz, G. V. B., Pereira, P. V. S., Maciel, M. C. G., Silva, L. A., Azevedo, A. P. S., Barroqueiro, E. S. B., & Guerra, R. N. M. (2006). Ascitic and solid Ehrlich tumor inhibitioin by Chenopodium ambrosiodes L. treatmente. Life Sciences, 78, 2650–2653. https://doi.org/10.1016/j.lfs.2005.10.006

Neto, F. F. (2012). Determinação do teor de diclofenaco de sódio em comprimidos por espectroscopia no infravermelho próximo - NIR com calibração multivirada – PLS. Universidade Federal do Rio Grande do Norte.

Noguez, C. (2007). Surface plasmons on metal nanoparticles: The influence of shape and physical environment. Journal of Physical Chemistry C, 111(10), 3606–3619. https://doi.org/10.1021/jp066539m

Oliveira-Tintino, C. D. de M., Tintino, S. R., Limaverde, P. W., Figueredo, P. S., Lima, L. F., Matos, Y. M. L. S. de, Coutinho, H. D. M., Siqueira-Júnior, J. P., Balbino, V. Q., & Silva, T. G. da. (2018). Inhibition of the essential oil from Chenopodium ambrosioides L. and α-terpinene on the NorA efflux-pump of Staphylococcus aureus. Food Chemistry, 262, 72–77. https://doi.org/10.1016/j.foodchem.2018.04.040

Penha, E. S., Lacerda-Santos, R., Carvalho, M. G. F., & Oliveira, P. T. (2017). Effect of Chenopodium ambrosioides on the healing process of the in vivo bone tissue. Microscopy Research and Technique, 80(11), 1167–1173. https://doi.org/10.1002/jemt.22913

Pereira, N. L. F., Aquino, P. E. A., Silva, M. R., Nascimento, E. M., Grangeiro, A. R. S., Oliveira, C. D. M., Tintino, S. R., Figueiredo, F. G., Veras, H. N. H., & Menezes, I. R. A. (2015). Efeito antibacteriano e anti-inflamatório tópico do extrato metanólico de Chenopodium ambrosioides L. Revista Fitos, 9(2). https://doi.org/10.5935/2446-4775.20150009

Prabhu, D., Arulvasu, C., Babu, G., Manikandan, R., & Srinivasan, P. (2013). Biologically synthesized green silver nanparticles from leaf extact of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochemistry, 48, 317–324. https://doi.org/10.1016/j.procbio.2012.12.013

Ribeiro, L. H. L. (2019). Análise dos programas de plantas medicinais e fitoterápicos no Sistema Único de Saúde (SUS) sob a perspectiva territorial. Ciencia & Saude Coletiva, 24(5), 1733–1742. https://doi.org/10.1590/1413-81232018245.15842017

Santana, M. C., Leandro, D., Gomes, R., & Paula De Souza Marcone, G. (2015). Avaliação da atividade antimicrobiana de nanopartículas de prata. Perspectivas Da Ciência e Tecnologia, 7(1), 36–45.

Sharma, V., Kaushik, S., Pandit, P., Dhull, D., Yadav, J. P., & Kaushik, S. (2019). Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Applied Microbiology and Biotechnology, 103(2), 881–891. https://doi.org/10.1007/s00253-018-9488-1

Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(1), 79–84. https://doi.org/10.1007/s00449-008-0224-6

Souza, J. P. J. de. (2014). Efeito anti-inflamatório do extrato hidroalcoólico de folhas de Chenopodium ambrosioides L. na bexiga de ratos submetidos à cistotomia. Universidade Federal do Maranhão.

Viana, A. V., Viana, D. dos S. F., de Figueirêdo, G. S., de Brito, J. E., Viana, V. G. F. V., & Junior, V. G. F. V. (2021). Potencial antimicrobiano das nanopartículas de prata estabilizadas em curcumina e extrato de folhas de cajueiro (Anacardium occidentale L.). Research, Society and Development, 10(9), 1–10. https://doi.org/10.33448/rsd-v10i9.18364

WHO. (2015). Global Action Plan on Antimicrobial Resistance (World Health Organization, Ed.). www.paprika-annecy.com

Wong, K. K. Y., & Liu, X. (2010). Silver nanoparticles - The real “silver bullet” in clinical medicine? MedChemComm, 1(2), 125–131. https://doi.org/10.1039/c0md00069h

Ye, H., Liu, Y., Li, N., Yu, J., Cheng, H., Li, J., & Zhang, X. Z. (2015). Anti-Helicobacter pylori activities of Chenopodium ambrosioides L. in vitro and in vivo. World Journal of Gastroenterology, 21(14), 4178–4183. https://doi.org/10.3748/wjg.v21.i14.4178

Zago, P. M. W., dos Santos Castelo Branco, S. J., de Albuquerque Bogéa Fecury, L., Carvalho, L. T., Rocha, C. Q., Madeira, P. L. B., de Sousa, E. M., de Siqueira, F. S. F., Paschoal, M. A. B., Diniz, R. S., & Gonçalves, L. M. (2019). Anti-biofilm action of Chenopodium ambrosioides extract, cytotoxic potential and effects on acrylic denture surface. Frontiers in Microbiology, 10(JULY). https://doi.org/10.3389/fmicb.2019.01724

Zhang, K., Lui, V. C. H., Chen, Y., Lok, C. N., & Wong, K. K. Y. (2020). Delayed application of silver nanoparticles reveals the role of early inflammation in burn wound healing. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63464-z

Published

07/10/2022

How to Cite

PINTO, C. C. A. .; VIANA JUNIOR, V. G. F. .; VIANA, V. G. F. .; VIANA, D. dos S. F. . Antibiotic potential of silver nanoparticles stabilized in hydroalcoholic extract of matruz (Chenopodium ambrosioides). Research, Society and Development, [S. l.], v. 11, n. 13, p. e284111335101, 2022. DOI: 10.33448/rsd-v11i13.35101. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35101. Acesso em: 22 nov. 2024.

Issue

Section

Health Sciences