Production of biosurfactants by bacteria collected in soil contaminated by diesel oil on the Antarctic Continent
DOI:
https://doi.org/10.33448/rsd-v11i13.35593Keywords:
Bacteria; Antarctica; Biosurfactant; Oil.Abstract
Currently, the whole world strives for a sustainable development to avoid the depletion of natural resources. Therefore, the search for new biotechnological products such as biosurfactants has generated interest due to its low toxicity, biodegradability and ecological acceptability. Furthermore, biosurfactants have several applications such as emulsification, wettability, foaming, cleaning, and reduction of crude oil viscosity. The objective of this work was to identify the bacteria collected in Antarctica and evaluate their capacity to produce biosurfactants. In this study, bacteria collected in diesel contaminated soil around the Comandante Ferraz Antarctic Station were identified (Rhodococcus erythropolis, Rhizobium radiobacter, Microbacterium liquefacien, Pseudomonas libanensis and Pseudomonas veronii) and analyses were carried out to confirm whether these bacteria produce biosurfactants. Interestingly, the compounds isolated from the bacteria showed droplet propagation and reduced the surface tension of the water, which are properties of biosurfactants. Furthermore, these compounds showed carbohydrates in their molecular composition. Given these findings, these species have potential application in biotechnological areas, such as bioremediation of environments contaminated by diesel oil and in cosmetic and personal care as emulsifier. In addition, the use of diesel oil waste by bacteria as a carbon source becomes an attractive alternative because it reduces environmental contamination and has a low cost.
References
Adu, S. A., Naughton, P. J., Marchant, R., & Banat, I. M. (2020). Microbial Biosurfactants in Cosmetic and Personal Skincare Pharmaceutical Formulations. Pharmaceutics, 12(1099), 1-21. http://dx.doi.org/10.3390/pharmaceutics12111099.
Al-Dhabi, N. A., Esmail, G. A., & Valan Arasu, M. (2020). Enhanced production of biosurfactant from Bacillus subtilis strain Al-Dhabi-130 under solid-state fermentation using date molasses from Saudi Arabia for bioremediation of crude-oil-contaminated soils. International Journal of Environmental Research Public Health, 17(22), 8446. http://dx.doi.org/10.3390/ijerph17228446.
Anjun, F., Gautam, G., Edgard, G., & Negi, S. (2016). Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresource Technology, 213, 262–269. http://dx.doi.org/10.1016/j.biortech.2016.02.091.
Atakpa, E. O., Zhou, H., Jiang, L., Ma, Y., Liang, Y., Li, Y., Zhang, D., & Zhang, C. (2022). Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria. Chemosphere, 290, 133337. http://dx.doi.org/10.1016/j.chemosphere.2021.133337.
Barros, F. F. C., Quadros C. P., & Pastore, G. M. (2008). Studies of emulsifying properties and stability of the biosurfactant produced by Bacillus subtilis in cassava wastewater. Food Science Technology, 28(4), 979-985. http://dx.doi.org/10.1590/S0101-20612008000400034.
Batista, S. B., Mounteer, A. H., Amorim, F. R., & Tótola, M. R. (2006). Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresource Technology, 97(6), 868-875. http://dx.doi.org/10.1016/j.biortech.2005.04.020.
Befkadu, A. A., & Chen, Q. (2018). Surfactant-enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: a review. Pedosphere, 28(3), 383–410. http://dx.doi.org/10.1016/S1002-0160(18)60027-X.
Bezza, F. A., & Chirwa, E. M. (2017). Pyrene biodegradation enhancement potential of lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. Journal of Hazardous Materials, 321, 218–227. http://dx.doi.org/10.1016/j.jhazmat.2016.08.035.
Bodour, A. A., & Miller-Maier, R. M. (1998). Application of a modified drop colapse technique for surfactant quantification and screening of biosurfactant-producing microorganisms. Journal of Microbiological Methods, 32(3), 273-280. http://dx.doi.org/10.1016/S0167-7012(98)00031-1.
Bodratti, A. M., Sarkar, B., & Alexandridis, P. (2017). Adsorption of poly(ethylene oxide)-containing amphiphilic polymers on solid-liquid interfaces: fundamentals and applications. Advances in Colloid and Interface Science, 244, 132-163. http://dx.doi.org/10.1016/j.cis.2016.09.003.
Carrillo, P. G, Mardaraz, C., Pitta-Alvarez, S. I., & Giuliett A. M. (1996). Isolation and selection of biosurfactant producing bacteria. World Journal of Microbiology and Biotechnology, 12(1), pp. 82–84.
Cazals, F., Huguenot, D., Crampon, M., Colombano, S., Betelu, S., Galopin, N., Perrault, A., Simonnot, M.O., Ignatiadis, I., & Rossano, S. (2020). Production of biosurfactant using the endemic bacterial community of a PAHs contaminated soil, and its potential use for PAHs remobilization. Sci. Total Environ., 709, 136-143. http://dx.doi.org/10.1016/j.scitotenv.2019.136143.
Clements, T., Ndlovu, T., Khan, S., & Khan, W. (2019). Biosurfactants produced by Serratia species: classification, biosynthesis, production and application. Appl Microbiol Biotechnol, 103(2), 589-602. http://dx.doi.org/10.1007/s00253-018-9520-5.
Christofi, N., & Ivshina, I. B. (2002). Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol, 93(6), 915-929. http://dx.doi.org/10.1046/j.1365-2672.2002.01774.x
Cooper, D. G., & Goldenberg, B. G. (1987). Surface-active agents from two Bacillus species. Appl Environ Microbiol, 53(2), 224–229. http://dx.doi.org/10.1128/aem.53.2.224-229.1987.
Das, P., Mukherjee, S., Sivapathasekaran, C., & Sen R. (2010). Microbial surfactants of marine origin: potentials and prospects. Advances in Experimental Medicine and Biology, 672, 88-101. http://dx.doi.org/10.1007/978-1-4419-5979-9_7.
De Nevers N., & Grahn R. (1991). Fluid mechanics for chemical engineers. McGraw-Hill.
Derguine-Mecheri, L., Kebbouche-Gana, S., & Djenane, D. (2021). Biosurfactant production from newly isolated Rhodotorula sp. YBR and its great potential in enhanced removal of hydrocarbons from contaminated soils. World Journal of Microbiology and Biotechnology, 37(1), 18. http://dx.doi.org/10.1007/s11274-020-02983-3.
Dubois, M., Gills, K. A., Hailton, J. K., Reberes, P. A., & Smit, F. (1956). Colorimetric method for determination of sugar and related substances. Analytical Chemistry, 28(3), 350-356. http://dx.doi.org/ 10.1021/ac60111a017.
Dusane, D. H., Pawar, V. S., Nancharaiah, Y. V., Venugopalan, V. P., Kumar, A. R., & Zinjarde, S. S. (2011). Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling, 27(6), 645-654. http://dx.doi.org/10.1080/08927014.2011.594883.
Ellaiah, P., Prabhakar, T., Sreekanth, M., Taleb, A. T., Raju, P. B., & Saisha, V. (2002). Production of glycolipids containing biosurfactant by Pseudomonas species. Indian Journal of Experimental Biology, 40(9), 1083–1086.
Ejike Ogbonna, K., Victor Agu, C., Okonkwo, C. C., Tochukwu Ughamba, K., Akor, J., & Njoku, O.U. (2021). Use of Spondias mombin fruit pulp as a substrate for biosurfactant production. Bioengineered, 12(1), 1-12. http://dx.doi.org/10.1080/21655979.2020.1853391.
Felipe, L. O., & Dias, S. C. (2017). Surfactantes sintéticos e biossurfactantes: vantagens e desvantagens. Química Nova na Escola, 39(3), 228-236.
Grabowski, A., Nercessian, O., Fayolle, F., Blanchet, D., & Jeanthon, C. (2005). Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiology Ecology, 54(3), 427-443. http://dx.doi.org/10.1016/j.femsec.2005.05.007.
Hajimohammadi, A., Ngo, T., & Kashani, A. (2018). Sustainable one-part geopolymer foams with glass fines versus sand as aggregates. Construction and Building Materials, 171, 223–231. http://dx.doi.org/10.1016/j.conbuildmat.2018.03.120.
Harshada K. (2014). Biosurfactant: a potent antimicrobial agent. Journal of Microbiology and Experimentation, 1(5), 1-5. http://dx.doi.org/10.15406/jmen.2014.01.00031.
Helmy, A., De Simoni, M. Guilfoyle, M. R., Carpenter, K. L. H., & Peter J.H. (2011). Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Progress in Neurobiology, 95(3), 352–372. http://dx.doi.org/10.1016/j.pneurobio.2011.09.003.
Janek, T., Lukaszewicz, M., & Krasowska, A. (2012). Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiology, 12(24), 1-9. http://dx.doi.org/10.1186/1471-2180-12-24.
Jimoh, A. A., & Lin, J. (2020). Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicology and Environmental Safety Academic Press, 184, 2-20. http://dx.doi.org/10.1016/j.ecoenv.2019.109607.
Joshi S. J., Geetha S. J., & Desai A. J. (2015). Characterization and application of biosurfactant produced by Bacillus licheniformis R2. Applied Biochemistry and Biotechnology, 177(2), 346–361. http://dx.doi.org/10.1007/s12010-015-1746-4.
Kawahara, H., Hirai, A., Minabe T., & Obata H. (2013). Stabilization of Astaxanthin by a novel biosurfactant produced by Rhodotorula mucilaginosa KUGPP-1. Biocontrol Science, 18(1), 21-28. http://dx.doi.org/10.4265/bio.18.21.
Lee, G. L. Y., Zakaria, N. N., Convey, P., Futamata, H., Zulkharnain, A., Suzuki, K., Abdul Khalil, K., Shaharuddin, N. A., Alias, S. A., González-Rocha, G., & Ahmad, S. A. (2020). Statistical optimisation of phenol degradation and pathway identification through whole genome sequencing of the cold-adapted Antarctic bacterium Rhodococcus sp. strain AQ5-07. International Journal of Molecular Science. 21(24), 9363. http://dx.doi.org/10.3390/ijms21249363.
Luna, J. M., Rufino, R. D., & Sarubbo, L. A. (2016). Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Safety and Environmental Protection, 102, 558–566. http://dx.doi.org/10.1016/j.psep.2016.05.010.
Marques, N. S. A. A., Silva, I. G. S. D., Cavalcanti, D. L., Maia, P. C. S. V., Santos, V. P., Andrade, R. F. S., & Campos-Takaki, G. M. (2020). Eco-Friendly bioemulsifier production by Mucor circinelloides ucp0001 isolated from mangrove sediments using renewable substrates for environmental applications. Biomolecules, 10(365), 1-15. http://dx.doi.org/doi:10.3390/biom10030365.
Martins, P. C., Bastos, C. G., Granjeiro, P. A., & Martins, V. G. (2018). New lipopeptide produced by Corynebacterium aquaticum from a low-cost substrate. Bioprocess and Biosystem Engineering, 41(8), 1177-1183. http://dx.doi.org/10.1007/s00449-018-1946-8.
Martins, P. C., & Martins, V. G. (2018). Biosurfactant production from industrial wastes with potential remove of insoluble paint. International Biodeterioration & Biodegradation, 127, 10–16. http://dx.doi.org/10.1016/j.ibiod.2017.11.005.
Mnif I., & Ghribi, D. (2015). Lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Peptide Science, 104(3), 129-147. http://dx.doi.org/10.1002/bip.22630.
Morikawa M., Hirata Y., & Imanaka T. (2000). A study on the structure-function relationship of lipopeptide biosurfactants. Biochimica et Biophysica Acta, 1488(3), 211–218. http://dx.doi.org/10.1016/S1388-1981(00)00124-4.
Moshtagh, B., Hawboldt, K., & Zhang, B. (2019). Optimization of biosurfactant production by Bacillus subtilis N3-1P using the brewery waste as the carbon source. Environmental Technology, 40(25), 3371-3380. http://dx.doi.org/10.1080/09593330.2018.1473502.
Nithya, C., Aravindraja, C., & Pandian, S. K. (2010). Bacillus pumilus of Palk Bay origin inhibits quorum-sensing-mediated virulence factors in Gram-negative bacteria. Research in Microbiology, 161(4), 293-304. http://dx.doi.org/0.1016/j.resmic.2010.03.002.
Nitschke, M., & Silva, S. S. (2018). Recent food applications of microbial surfactants. Critical Reviews in Food Science and Nutrition, 58(4), 631–638. http://dx.doi.org/10.1080/10408398.2016.1208635.
Patel, S., Homaei, A., Patil, S., & Daverey, A. (2019). Microbial biosurfactants for oil spill remediation: pitfalls and potentials. Applied Microbiology and Biotechnology, 103(1), 27-37. http://dx.doi.org/10.1007/s00253-018-9434-2.
Phulpoto, I. A., Yu, Z., Hu, B., Wang, Y., Ndayisenga, F., Li, J., Liang, H., & Qazi, M. A. (2020). Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it's potential for oil contaminated soil remediation. Microbial Cell Factories, 19(1), 145. http://dx.doi.org/10.1186/s12934-020-01402-4.
Pires, M. E. E., Parreira, A. G., Silva, T. N. L., Colares, H. C., da Silva, J. A., de Magalhães, J. T., Galdino, A. S., Gonçalves, D. B., Granjeiro, J. M., & Granjeiro, P. A. (2020). Recent patents on impact of lipopeptide on the biofilm formation onto titanium and stainless steel surfaces. Recent Patents on Biotechnology, 14(1), 49-62. http://dx.doi.org/10.2174/1872208313666190822150323.
Satpute, S. K., Banat, I. M., Dhakephalkar, P. K., Banpurkar, A. G., & Chopade, B. A. (2010). Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnology Advances, 28(4), 436-450. http://dx.doi.org/10.1016/j.biotechadv.2010.02.006.
Satpute, S. K., Banpurkar, A. G., Dhakephalkar, P. K., Banat, I. M., & Chopade, B. A. (2010). Methods for investigating biosurfactants and bioemulsifiers: a review. Critical Reviews in Biotechnology, 30(2), 127–144. http://dx.doi.org/10.3109/07388550903427280.
Sharma, P., & Sharma, N. (2020). Microbial biosurfactants-an ecofriendly boon to industries for green revolution. Recent Patents on Biotechnology, 14(3), 169-183. http://dx.doi.org/10.2174/1872208313666191212094628.
Sidkey, N. M., Mohamed, H. F., & Elkhouly, H. I. (2016). Evaluation of different screening methods for biosurfactant producers isolated from contaminated Egyptian samples grown on industrial olive oil processing waste. British Microbiology Research Journal, 17(4), 1-19. http://dx.doi.org/10.9734/BMRJ/2016/28437.
Sun, W., Cao, W., Jiang, M., Saren, G. G., Liu, J., Cao, J., Ali, I., Yu, X., Peng, C., & Naz, I. (2018). Isolation and characterization of biosurfactant- producing and diesel oil degrading Pseudomonas sp. CQ2 from Changqing oil field, China. Royal Society of Chemistry Advanced, 8, 39710–39720. http://dx.doi.org/10.1039/c8ra07721e.
Suthar H., & Nerurkar A. (2016). Characterization of biosurfactant produced by Bacillus licheniformis TT42 having potential for enhanced oil recovery. Applied Biochemistry and Biotechnology, 180(2), 248-260. http://dx.doi.org/10.1007/s12010-016-2096-6.
Thomas, G. E, Brant, J. L., Campo, P., Clark, D. R., Coulon, F., Gregson, B. H., McGenity, T. J., & McKew, B. A. (2021). Effects of dispersants and biosurfactants on crude-oil biodegradation and bacterial community succession. Microorganisms, 9(6), 1-23. http://dx.doi.org/10.3390/microorganisms9061200.
Tribelli, P. M., Di Martino, C., López, N. I., & Iustman, L. J. R. (2012). Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyal kanoate producer Pseudomonas extremaustralis. Biodegradation, 23(5), 645–651. http://dx.doi.org/10.1007/s10532-012-9540-2.
Trudgeon, B., Dieser, M., Balasubramanian, N., Messmer, M., & Foreman, C. M. (2020). Low-temperature biosurfactants from polar microbes. Microorganisms, 8(8), 1-14. http://dx.doi.org/10.3390/microorganisms8081183.
Tugrul, T., & Cansunar, E. (2005). Detecting surfactant-producing microorganisms by the drop-collapse test. World Journal of Microbiology and Biotechnology, 21(6), 851-853. http://dx.doi.org/10.1007/s11274-004-5958-y.
Varvaresou, A., & Iakovou, K. (2015). Biosurfactants in cosmetics and biopharmaceuticals. Letters in Applied Microbiology, 61(3), 214-223. http://dx.doi.org/10.1111/lam.12440.
Vasileva-Tonkova, E., & Gesheva, V. (2007). Biosurfactant production by Antarctic facultative anaerobe Pantoea sp. during growth on hydrocarbons. Current microbiology, 54(2), 136–141. http://dx.doi.org/10.1007/s00284-006-0345-6.
Yong, L., Huifeng, W., Xiaoting, L., & Jinchang, L. (2015). Heavy metal contamination of agricultural soils in Taiyuan, China. Pedosphere, 25(6), 901–909. http://dx.doi.org/10.1016/S1002-0160(15)30070-9.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Fernanda Ferreira Machado; Helon Guimarães Cordeiro; Maria Auxiliadora de Oliveira; Diego Fernandes Livio; Tuânia Natacha Lopes Silva ; Hiure Gomes Ramos Meira; Vinícius Souza Tarabal; Adriano Guimarães Parreira; José Antonio da Silva ; Daniel Bonoto Gonçalves ; Juliano de Carvalho Cury; Paulo Afonso Granjeiro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.