Mate tea with Lactobacillus probiotics: viability, chemical characterization and in vitro resistance to the gastrointestinal tract

Authors

DOI:

https://doi.org/10.33448/rsd-v11i13.35607

Keywords:

Mate tea; Probiotic; Gastrointestinal resistance; Antioxidants; HPLC analyses.

Abstract

To meet the consumer demand for functional drinks with bioactive compounds, this study aimed to evaluate the addition of Lactiplantibacillus plantarum LP299V, Lacticaseibacillus rhamnosus GG and Lactobacillus acidophilus in mate tea. The viability of the probiotic bacteria, microbiological and physicochemical characteristics, the in vitro resistance to the gastrointestinal tract and the antioxidant capacity of the mate teas were evaluated during 28 days. Unlike L. plantarum and L. rhamnosus, L. acidophilus did not remain viable in the product. The physicochemical characteristics of the teas with L. plantarum and L. rhamnosus were maintained over time. Phenolic compounds of mate tea containing L. plantarum were identified by HPLC. There was stability of phenolic compounds and flavonoid content in teas over time. At the end of the gastrointestinal assay, there was 4.52 Log CFU/mL of L. plantarum, suggesting that consumption of 100 mL of tea may provide > 6.0 Log CFU/mL of the probiotic. Mate tea can carrier L. rhamnosus and L. plantarum. There is an increase in the search by consumers for health drinks and at the same time, there is a growing demand for alternatives carriers of probiotics, due to individuals with intolerance and allergy to dairy products, vegetarians and others. This study confirms the possibility of using mate tea, widely consumed in Brazil, as a positive carrier of of L. plantarum and L. rhamnosus, making it an attractive alternative beverage to the dairy matrix.

Author Biographies

Sabrine de Cássia Batista Silva , Federal Institute of Southeast of Minas Gerais

Food Science and Technology Department (DCTA/IF Sudeste MG)

Clara Grosso , Higher Institute of Engineering of the Polytechnic Institute of Porto

Higher Institute of Engineering of the Polytechnic Institute of Porto

Elsa F. Vieira , Higher Institute of Engineering of the Polytechnic Institute of Porto

Higher Institute of Engineering of the Polytechnic Institute of Porto

Maurilio Lopes Martins , Federal Institute of Southeast of Minas Gerais

Food Science and Technology Department (DCTA/IF Sudeste MG)

Vanessa Riani Olmi Silva , Federal Institute of Southeast of Minas Gerais

Food Science and Technology Department (DCTA/IF Sudeste MG)

Patricia Amaral Souza Tette , Federal University of Goiás

College of Nutrition (FANUT)

Cristina Delerue-Matos , Higher Institute of Engineering of the Polytechnic Institute of Porto

Higher Institute of Engineering of the Polytechnic Institute of Porto

Daiana Júnia de Paula Antunes, Federal Institute of Southeast of Minas Gerais

Food Science and Technology Department (DCTA/IF Sudeste MG)

References

Andrews, W. H., Flower, R. S., Silliker, J., & Bailey, J. S. (2001). Salmonella, Downes, F. P., Ito, K. (Eds.). Compendium of Methods for the Microbiological Examination of Foods. 4.ed. Washington, DC, American Public Health Association – APHA, 357-380.

Bader-Ui-Ain, H., Abbas, M., Saeed, F., Khalid, S., & Suleria, H. A. S. (2019). Non-Alcoholic Beverages, Bader-Ui-Ain, H., Abbas, M., Saeed, F., Khalid, S., Suleria, H. A. S. (Eds.). Functional Nonalcoholic Beverages: A Global Trend Toward a Healthy Life, 73-105.

Banwo, K., Olojede, A. O., Adesulu-Dahunsi, A. T., Verma, D. K., Thakur, M., Tripathy, S., Singhf, S., Patel, A. R., Gupta, A. K., Aguilar, C. N., & Utama, G. L. (2021). Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. Food Bioscence, 43, 101320, https://doi.org/10.1016/j.fbio.2021.101320.

Barroso, M. F., Noronha, J. P., Delerue-Matos, C., & Oliveira, M. B. P. P. (2011). Flavored Waters: Influence of Ingredients on Antioxidant Capacity and Terpenoid Profile by HS-SPME/GC-MS. J. Agric. Food Chem., 59, 5062-5072. https://doi.org/10.1021/jf1048244.

Binda, S., Hill, C., Johansen, E., Obis, D., Pot, B., Sanders, M.E., Tremblay, A., & Ouwehand, A.C. (2020). Criteria to Qualify Microorganisms as “Probiotic” in Foods and Dietary Supplements. Front. Microbiol., 11, 01-09. https://doi.org/10.3389/fmicb.2020.01662

Bedani, R., Rossi, E. A., & Saad, S. M. I. (2013). Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiol., 34, 382-389. https://doi.org/10.1016/j.fm.2013.01.012.

Bracesco, N., Sanchez, A. G., Contreras, V., Menini, T., & Gugliucci, A. (2011). Recent advances on Ilex paraguariensis research: Mini review. J. Ethnopharmacol, 136, 378–384. https://doi.org/10.1016/j.jep.2010.06.032.

Brazil. (2001). Resolução nº 12, de 02 de janeiro de 2001. Regulamento técnico sobre padrões microbiológicos para alimentos. Diário Oficial da União, Brasília, DF, 10 de janeiro de 2001. Ministério da Saúde. Agência Nacional de Vigilância Sanitária.

Bravo, L., Goya, L., & Lecumberri, E. (2007). LC/MS Characterization of phenolic constituents of mate (IIlex paraguienses, St. Hil.) and its antioxidant activity compared to commonly consumed beverages. Food Res. Int., 40, 393-405. https://doi.org/10.1016/j.foodres.2006.10.016.

Burris, K. P., Harte, F. M., Davidson, P. M., Stewart JR, C. N., & Zivanovic, S. (2012). Composition and bioactive properties of yerba mate (Ilex paraguariensis a. St.-Hil.): A review. Chil. J. Agr. Res., 72, 268-274. https://doi.org/10.4067/S0718-58392012000200016.

Collin, F. (2019). Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int J Mol Sci., 20, 01-17. 10.3390/ijms20102407.

Delerue, T., Barroso, M. F., Dias-Teixeira, M., Figueiredo-González, M., Delerue-Matos C., & Grosso C. (2021). Interactions between Ginkgo biloba L. and Scutellaria baicalensis Georgi in multicomponent mixtures towards cholinesterase inhibition and ROS scavenging. Food Res. Int., 140. https://doi.org/10.1016/j.foodres.2020.109857.

Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev., 82, 47-95. https://doi.org/10.1152/physrev.00018.2001.

Dumanović, J., Nepovimova, E., Natić, N., Kuča, K., & Jaćević, V. (2021). The Significance of Reactive Oxygen Species and Antioxidant Defense System in Plants: A Concise Overview. Frontiers in Plant Science, 11, 01-13. 10.3389/fpls.2020.552969.

FAO/WHO (2001). Food and Agriculture Organization of United Nations/World Health Organization. Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Report of a Joint FAO/WHO Expert Consultation, Córdoba, Argentina.

Ferreira, D. A. (2010). SISVAR-Sistema de análise de variância. DEX/UFLA.

Frizon, C. N. T., Perussello, C. A., Sturion, J. A., & Hoffmann-Ribani, R. (2018). Novel Beverages of Yerba-Mate and Soy: Bioactive Compounds and Functional Properties. Beverages, 21, 01-11. 10.3390/beverages4010021.

Galgano, F., Condelli, N., Caruso, M. C., Colangelo, M. A., & Favati, F. (2015). Probiotics and prebiotics in fruits andvegetables: technological and sensory aspects. Rai, V. R., Bai, J. A. (Eds.). Beneficial microbes in fermented and functional foods. Boca Raton, London, CRC Press, 189-206.

Gião, M.S., González-Sanjosé, M.L., Rivero-Pérez, M.D., Pereira, C.I., Pintado, M.E., & Malcata, F.X. (2007). Infusions of Portuguese medicinal plants: Dependence of final antioxidant capacity and phenol content on extraction features. J. Sc. Food Agr., 87, 2638-2647. https://doi.org/10.1002/jsfa.3023.

Gonzalez-Gil, F., Diaz-Sanchez, S., Pendleton, S., Andino, A., Zhang, N., Yard, C., Crilly, N., Harte, F., & Hanning, I. (2014). Yerba mate enhances probiotic bacteria growth in vitro but as a feed additive does not reduce Salmonella Enteritidis colonization in vivo. Poult. Sci., 93, 434-440. https://doi.org/10.3382/ps.2013-03339.

Godshall, M. A. (2016). Sugars and Sugar Products” Jatimer JR.G. W., (Ed.). Official Methods of Analysis of the Association of Official Analytical Chemists international, 20. ed. Rockville, USA: AOAC International, 44, 1-53.

Grosso, C., Valentão, P., Andrade, C., & Andrade, P. B. (2015). HPLC–DAD analysis and in vitro enzyme inhibition: An integrated approach to predict herbal binary mixture behaviour employing median effect equation. Microchem. J., 182, 119-176. https://doi.org/10.1016/j.microc.2014.12.006.

Gulçin, I. (2006). Antioxidant and antiradical activities of L-carnitine. Life Sci., 78, 803-811. https://doi.org/ 10.1016/j.lfs.2005.05.103.

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 11, 506-514. https://doi.org/10.1038/nrgastro.2014.66.

Hussain, S. A., Patil, G. R., Yadav, V., Singh, R. R. B., & Singh, A. K. (2016). Ingredient formulation effects on physico-chemical, sensory, textural properties and probiotic count of Aloe vera probiotic dahi. LWT – Food Sci. Technol., 65, 371-380. https://doi.org/10.1016/J.LWT.2015.08.035.

Jafarei, P., & Ebrahimi, M. T. (2011). Lactobacillus acidophilus cell structure and application. Afr. J. Microbiol. Res., 24(5), 4033-4042. https://doi.org/10.5897/AJMR11.630.

Koo, H. M., & Suhaila, M. (2001). Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 49, 3106-3112. https://doi.org/10.1021/jf000892m.

Kornacki, J. L., & Johnson, J. L. (2001). Enterobacteriaceae, coliforms, and Escherichia coli as quality and safety indicators. Downes, F. P., Ito, K. (Eds.). Compendium of Methods for the Microbiological Examination of Foods. 4.ed. Washington, American Public Health Association – APHA, 69-82.

Lima, I. F. P., Lindner, J. D., Soccol, V. T., Parada, J. L., & Soccol, C. R. (2012). Development of an Innovative Nutraceutical Fermented Beverage from Herbal Mate (Ilex paraguariensis A.St.-Hil.) Extract. Int. J. Mol. Sci., 13, 788-800. https://doi.org/10.3390/ijms13010788.

Majeed, M., Majeed, S., Nagabhushanam, K., Arumugam, S., Beede, K., & Ali, F. (2019). Evaluation of probiotic Bacillus coagulans MTCC 5856 viability after tea and coffee brewing and its growth in GIT hostile environment. Food Res. Int., 121, 497–505. https://doi.org/10.1016/j.foodres.2018.12.003.

Mancini, S., Nardo, L., Gregori, M., Ribeiro, I., Mantegazza, F., Delerue-Matos, C., Masserini, M., & Grosso, C. (2018). Functionalized liposomes and phytosomes loading Annona muricata L. aqueous extract: Potential nanoshuttles for brain-delivery of phenolic compounds. Phytomedicine, 42, 233-244. https://doi.org/10.1016/j.phymed.2018.03.053.

Nakamura, T., Silva, F. S., Silva, D. X., Souza, M. W., & Moya H. D. (2013). Determination of total antioxidant activity and total content of polyphenols in samples of tea leaves marketed in bags. ABCS Health Sciences, 38, 8-16. https://doi.org/10.7322/abcshs.v38i1.3.

Paz, M., Gúllon, P., Barroso, M.F., Carvalho, A.P., Domingues, V.F., Gomes, A.M., Becker, H., Longhinotti, E., & Delerue-Matos, C. (2015). Brazilian fruit pulps as functional foods and additives: Evaluation of bioactive compounds. Food Chem., 172, 462-468. https://doi.org/10.1016/j.foodchem.2014.09.102.

Peng, M., Tabashsum, Z., Anderson, M., Truong, A., Houser, A. K., Padilla, J., Akmel, A., Bhatti, J., Rahaman, S. O., & Biswas, D. (2020). Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Compr. Rev. Food Sci. Food Saf., 19, 1908-1933. https://doi.org/10.1111/1541-4337.12565.

Peres, R. G., Tonin, F. G., Tavares, M. F., & Rodriguez-Amaya, D. B. (2013). HPLC-DAD-ESI/MS identification and quantification of phenolic compounds in Ilex paraguariensis beverages and on-line evaluation of individual antioxidant activity. Molecules, 18, 3859-71. https://doi.org/10.3390/molecules18043859.

Piovezan-Borges, A. C., Valério-Júniora C., Gonçalves, I. L., Mielniczki-Pereira, A. A., & Valduga, A. T. (2016). Antioxidant potential of yerba mate (Ilex paraguariensis St. Hil.) extracts in Saccharomyces cerevisae deficient in oxidant defense genes. Braz. J. Biol., 76, 539–44. https://doi.org/10.1590/1519-6984.01115.

Qadir, M. I. (2017). Role of Green Tea Flavonoids and Other Related Contents in Cancer Prevention. Crit. Rev. Eukaryot. Gene Expr., 27, 163-171. https://doi.org/ 10.1615/CritRevEukaryotGeneExpr.2017019493.

Richer, R. L., & Vedamuthu, E. R. (2001). Milk and milk products. Downes, F. P., Ito, K. (Eds.). Compendium of Methods for the Microbiological Examination of Foods, 4. ed., Washington, DC, American Public Health Association – APHA, 483-496.

Ruch, R. J., Cheng, S. J., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10, 1003-1008. https://doi.org/10.1093/carcin/10.6.1003.

Souza, M. R. A., Oldoni, T. L. C., D’arce, R. M. A. B., & Alencar, S. M. (2008). Antioxidant activity and phenolic composition of herbal infusions consumed in Brazil. CYTA – J. Food, 6, 41-47. https://doi.org/10.1080/11358120809487626.

TIBCO (2017). Software Inc. Statistica (data analysis software system). version 13. http://statistica.io.

Wianowska, D., Dawidowicz, A. L., Bernacik, K., & Ypek, R. (2017). Determining the true content of quercetin and its derivatives in plants employing SSDM and LC–MS analysis. Eur. Food Res. Technol., 243, 27–40. https://doi.org/10.1007/s00217-016-2719-8.

Yahfoufi, N., Mallet, J. F., Grahan, E., & Matar, C. (2018). Role of Probiotics and Prebiotics in Immunomodulation. Curr. Opin. Food Sci., 20, 82-91. https://doi.org/10.1016/j.cofs.2018.04.006.

Yan, Z., Zhong, Y., Duan, Y., Chen, Q., & Li, F. (2020). Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr., 2, 115-123. 10.1016/j.aninu.2020.01.001.

Yi, Y., Zhang, Z., Zhao, F., Liu, H., Yu, L., Zha, J., & Wang, G. (2018). Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish and Shellfish Immunol. J., 78, 322-330. https://doi.org/10.1016/j.fsi.2018.04.055.

Downloads

Published

12/10/2022

How to Cite

SILVA , S. de C. B. .; GROSSO , C. .; VIEIRA , E. F. .; MARTINS , M. L. .; SILVA , V. R. O. .; TETTE , P. A. S. .; DELERUE-MATOS , C. .; ANTUNES, D. J. de P. .; MARTINS, E. M. F. . Mate tea with Lactobacillus probiotics: viability, chemical characterization and in vitro resistance to the gastrointestinal tract. Research, Society and Development, [S. l.], v. 11, n. 13, p. e446111335607, 2022. DOI: 10.33448/rsd-v11i13.35607. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/35607. Acesso em: 5 jan. 2025.

Issue

Section

Health Sciences