Thermogenic potential of bioactive compounds in the obesity context

Authors

DOI:

https://doi.org/10.33448/rsd-v11i14.36394

Keywords:

Phytochemicals; Thermogenics; Obesity.

Abstract

Overweight and obesity are becoming more frequent worldwide. According to the World Health Organization (WHO), the global prevalence of obesity has almost tripled since 1975. Diet-induced obesity is a major aspect of the modern sedentary lifestyle, eating habits and metabolic dysfunctions described globally as the syndrome of cardiometabolic risk. So far, some phytochemicals derived from edible natural resources have been found to have a promoting effect on thermogenic adipocytes. These natural compounds, such as lycopene, mangiferin, cyanidin-3-glycoside, gingerol and baicalin were reported to activate adipocyte thermogenesis through the regulation of different signaling pathways. compounds in the context of obesity. This is an integrative literature review, built from the following steps: elaboration of the guiding question, search or sampling in the literature, data collection, critical analysis of the included studies, discussion of the results and presentation of the integrative review. The search and selection process resulted in the eligibility of 5 articles. The results reported by each study indicate that the presence of some phytochemicals in the diet can prevent body weight gain, remodeling the body's energy metabolism through different mechanisms of action such as activation of functional thermogenic genes, induction of the gamma 1 alpha coactivator of the receptor activated by peroxisome proliferator (PGC1α), increased respiratory exchange and heat production from adipose tissue.

References

Borah, A. K., Sharma, P., Singh, A., Kalita, K. J., Saha, S., & Borah, J. C. (2021). Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. Journal of Ethnopharmacology, 280, 114410.

Carobbio, S., Pellegrinelli, V., & Vidal-Puig, A. (2017). Adipose tissue function and expandability as determinants of lipotoxicity and the metabolic syndrome. Obesity and lipotoxicity, 161-196.

Ceglarek, V. M., Guareschi, Z. M., Moreira-Soares, G., Ecker-Passarello, R. C., Balbo, S. L., Bonfleur, M. L., & Grassiolli, S. (2020). Derivação duodeno-jejunal reduz o acúmulo de lipídios no tecido adiposo marrom de ratos com obesidade hipotalâmica. ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), 33.

Choi, J. H., Song, N. J., Lee, A. R., Lee, D. H., Seo, M. J., Kim, S., ... & Park, K. W. (2018). Oxyresveratrol increases energy expenditure through Foxo3a-mediated Ucp1 induction in high-fat-diet-induced obese mice. International journal of molecular sciences, 20(1), 26.

Devlin, M. J. (2015). The “skinny” on brown fat, obesity, and bone. American journal of physical anthropology, 156, 98-115.

Guedes, J. M., Pieri, B. L. D. S., Luciano, T. F., Marques, S. D. O., Guglielmo, L. G. A., & Souza, C. T. D. (2019). Exercícios físicos de resistência, hipertrofia e força muscular reduzem igualmente adiposidade, inflamação e resistência à insulina em camundongos obesos por dieta hiperlipídica. Einstein (São Paulo), 18.

Li, H., & Tang, S. (2021). Baicalin attenuates diet-induced obesity partially through promoting thermogenesis in adipose tissue. Obesity Research & Clinical Practice, 15(5), 485-490.

Li, H., Qi, J., & Li, L. (2019). Phytochemicals as potential candidates to combat obesity via adipose non-shivering thermogenesis. Pharmacological research, 147, 104393

Luna-Luna, M., Medina-Urrutia, A., Vargas-Alarcón, G., Coss-Rovirosa, F., Vargas-Barrón, J., & Pérez-Méndez, Ó. (2015). Adipose tissue in metabolic syndrome: onset and progression of atherosclerosis. Archives of medical research, 46(5), 392-407.

Rahman, M. S., & Kim, Y. S. (2020). Mangiferin induces the expression of a thermogenic signature via AMPK signaling during brown-adipocyte differentiation. Food and Chemical Toxicology, 141, 111415.

Saito, M., & Yoneshiro, T. (2013). Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Current opinion in lipidology, 24(1), 71-77.

Sarkar, A., & Mackie, A. R. (2020). Engineering oral delivery of hydrophobic bioactives in real-world scenarios. Current Opinion in Colloid & Interface Science, 48, 40-52.

Schnaider, J. M., & Borges, B. E. (2021). Tecido adiposo marrom em adultos como alvo de estudo no desenvolvimento de novas terapias para o manejo e tratamento da obesidade: uma revisão integrativa. Revista de Medicina, 100(5), 460-471.

Smeets, A. J., Janssens, P. L., & Westerterp-Plantenga, M. S. (2013). Addition of capsaicin and exchange of carbohydrate with protein counteract energy intake restriction effects on fullness and energy expenditure. The Journal of nutrition, 143(4), 442-447.

Souza, M. T. D., Silva, M. D. D., & Carvalho, R. D. (2010). Revisão integrativa: o que é e como fazer. Einstein (São Paulo), 8, 102-106.

Tseng, Y. H., Kokkotou, E., Schulz, T. J., Huang, T. L., Winnay, J. N., Taniguchi, C. M., ... & Kahn, C. R. (2008). New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature, 454(7207), 1000-1004.

Vasconcellos, M., de Araujo, D. G., Azeredo, G. C. C., de Moraes, G. T. D. S., Vieira, I. R., Barbosa, J. M. D. S. P., ... & Pacheco, G. M. (2022). Transplante autólogo de tireoide em tecido adiposo branco. Estudo experimental. Revista da JOPIC, 6(10).

Wang, J., Li, D., Wang, P., Hu, X., & Chen, F. (2019). Ginger prevents obesity through regulation of energy metabolism and activation of browning in high-fat diet-induced obese mice. The Journal of nutritional biochemistry, 70, 105-115.

Wang, J., Suo, Y., Zhang, J., Zou, Q., Tan, X., Yuan, T., ... & Liu, X. (2019). Lycopene supplementation attenuates western diet-induced body weight gain through increasing the expressions of thermogenic/mitochondrial functional genes and improving insulin resistance in the adipose tissue of obese mice. The Journal of nutritional biochemistry, 69, 63-72.

You, Y., Han, X., Guo, J., Guo, Y., Yin, M., Liu, G., ... & Zhan, J. (2018). Cyanidin-3-glucoside attenuates high-fat and high-fructose diet-induced obesity by promoting the thermogenic capacity of brown adipose tissue. Journal of Functional Foods, 41, 62-71.

Published

06/11/2022

How to Cite

COSTA, J. A. da .; MORAIS, L. dos S. .; FREIRE, L. M. .; GROSSI JUNIOR, S. A. .; MOURA MARTINS, T. .; HARB, A. H. .; ALVES, A. C. B. A.; SOUSA, F. M. de .; SILVA, R. S. C.; CARNEIRO, C. R. . Thermogenic potential of bioactive compounds in the obesity context. Research, Society and Development, [S. l.], v. 11, n. 14, p. e574111436394, 2022. DOI: 10.33448/rsd-v11i14.36394. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/36394. Acesso em: 20 apr. 2024.

Issue

Section

Review Article