Sequential production of two biopolymers-polyhydroxyalkanoate and levan by microbial fermentation

Authors

DOI:

https://doi.org/10.33448/rsd-v12i3.40745

Keywords:

Polyhydroxyalkanoates; Levana; Fermentation; Cupriavidus necator; Bacillus subtilis natto.

Abstract

The sequential production of polyhydroxyalkanoates (PHA) and levan was investigated by microbial fermentation using agro-industrial residues. PHA production was carried out by Cupriavidus necator DSMZ 545 in two steps: a) bacterial growth, using pure (MN) and hydrolyzed (MH) molasses and; b) accumulation of PHA, using standard glycerol (GP) and crude glycerol (GB). The fermented remaining from the C. necator growth stage was separated from the PHA-containing biomass and used in the subsequent production of levan by Bacillus subtilis (natto) Takahashi. The medium containing MH+GP generated a rate of 15 mg of PHA, while the medium based on MH+GB the rate of PHA was almost twice as high (28.4 mg). FTIR spectroscopic analysis of PHA indicated stretching vibrations characteristic for a PHB-like molecule. In turn, the levan produced in this study was precipitated with different volumes of ethanol, generating levans with different molecular weights. The results of the characterization of this fructan by chromatography showed that it was predominantly constituted by fructose units. In addition, the dynamic and kinematic viscosity values for levan were similar in the analyzed concentrations and, therefore, did not provide any clues about the molecular weight of this biopolymer. Finally, the sequential production process of PHA and levan, as a second bioproduct, represents an elegant alternative to reduce the total costs of PHA production.

References

Akaraonye, E., Keshavarz, T. & Roy, I. (2010) Production of polyhydroxyalkanoates: the future green materials of choice. Journal of Chemical Technology and Biotechnology, 85, 732-743.

Albuquerque, P. B. S., & Malafaia, C. B. (2018) Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates. International Journal of Biological Macromolecules,107, 615-625.

Albuquerque, P. B. S., Araujo, K. S., Silva, K. A. A., Houllou, L. M., Locatelli, G. O. & Malafaia, C. B. (2018) Potential production of bioplastics polyhydroxyalkanoates using residual glycerol. Journal of Environmental Analysis and Progress, 3, 1, 055-060.

Alves, A. A., Siqueira, E. C., Barros, M. P. S., Silva, P. E. C., & Houllou, L. M. (2022) Polyhydroxyalkanoates: a review of microbial production and technology application. International Journal of Environmental Science and Technology, 1-12.

Benigar, E., Tomsic, M., Sretenovic, S., Stopar, D., Jamnik, A. & Dogsa, I. (2015). Evaluating SAXS results on aqueous solutions of various bacterial levan utilizing the string-of-beads model. Acta Chimica Slovenica, 62, 509-517.

Dahech, I., Fakhfakh, J., Damak M, Belghith, H., Mejdoub., H. & Belghith, K. S. (2013). Structural determination and NMR characterization of a bacterial exopolysaccharide. International Journal of Biological Macromolecules, 59, 417-422.

Dalsasso, R. R., Pavan F. A., Bordignon, S. E., Aragao, G. M. F., & Poletto, P. (2019) Polyhydroxybutyrate (PHB) production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate. Process Biochemistry, 85, 12-18.

Djuríc, A., Gojgíc-Cvijovíc, G., Jakovljevíc, D., Kekez, B., Kojíc, J. S., Mattinen, M. L., Harju, I. E., Vrvíc, M. M. & Beskoski, V. P. (2017). Brachybacterium sp. CH-KOV3 isolated from an oil-polluted environment – a new producer of levan. International Journal of Biological Macromolecules, 104, 311-321.

European Bioplastics (2021). Bioplastics facts and figures. https://www.european-bioplastics.org/news/publications/. Accessed 22 Set 2022.

Geyer, R., Jambick, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3, 7, e1700782.

Lima, L. B., Silva, M. D., Viçoso, T. G. L., Martins, M. L. F., Silva, J. J., Silva, J. P. T., Lapena, S. A. B., Cruz, C. H. G., & Ernandes, F. M. P. G. (2020) Produção de levana por fermentação submersa utilizando Zymomonas mobilis cct 4494. Research, Society and Development, 9, 10, e3899108526.

Öner, E. T., Hernández, L. & Combie, J. (2016). Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnology Advances, 34, 5, 827-844.

Ozcan, E. & Öner, E. T. (2015). Microbial production of extracellular polysaccharides from biomass sources. In: Ramawat, K. G., Mérillon, J. M. (Eds). Polysaccharides Springer, 2015, 161-84.

PlasticsEurope (2021). Plastics - the Facts. https://plasticseurope.org/resources/publications/. Accessed 22 Set 2022.

Samui, A. B. & Kanai, T. (2019). Polyhydroxyalkanoates based copolymers. International Journal of Biological Macromolecules, 140, 522-537.

Shih, I-L., Wang, T-C., Chou, S-Z., & Lee, G-D. (2011). Sequential production of two biopolymers-levan and poly-ε-lysine by microbial fermentation. Bioresource Technology, 102, 4, 3966-3969.

Shih, I-L., Chen, L-D., Wang, T-C., Wu, J-Y., & Liaw, K-S. (2010). Tandem production of levan and ethanol by microbial fermentation. Green Chemistry, 12, 7, 1242-1247.

Shih, I-L., Yu, Y-T., Shieh, C-J., & Chien-Yan Hsieh, C-Y. (2005). Selective production and characterization of levan by Bacillus subtilis (Natto) Takahashi. Journal of Agricultural and Food Chemistry, 53, 21, 8211-8215.

Siqueira, E. C. & Öner, E. T. (2023). Co-production of levan with other high-value bioproducts: A review. International Journal of Biological Macromolecules, 235, 123800.

Siqueira, E. C. & Houllou, L. M (2022a). Co-production of polyhydroxyalkanoates and levan by Halomonas smyrnensis AAD6T. Research, Society and Development, 11, 16, e180111637925.

Siqueira, E. C. & Houllou, L. M. (2022b). Enriquecimento de melaço em glicose para a aplicação como substrato na produção de polihixidroxialcanoatos. In: Barbosa, F. C. Tópicos em Microbiologia. Piracanjuba-GO: Editora Conhecimento Livre, 2022. 5-20.

Siqueira, E. C., Rebouças, J. S., Pinheiro, I. O., & Formiga, F. R. (2020) Levan-based nanostructured systems: An overview. International Journal of Pharmaceutics, 580, 119242.

Siqueira, E. C. (2019). Desenvolvimento de sistemas nanoestruturados à base do biopolímero levana contendo paromomicina. 2019, 161 f. Tese (Doutorado em Biologia Celular e Molecular Aplicada) - Universidade de Pernambuco, Recife.

Siqueira, E.C., Vieira, A.M., Pinheiro, I.O. & Formiga, F.R. (2017). Development of nanoparticles from a biofabricated fructose polymer. Tissue Engineering: Part A, 23, S-154.

Stojkoviç, B., Sretenovic, S., Dogsa, I., Poberaj, I. & Stopar, D. (2015). Viscoelastic properties of levan-DNA mixtures important in microbial biofilm formation as determined by micro- and macrorheology. Biophysical Journal, 108, 758-765.

Vega‑Vidaurri, J., Hernandez‑Rosas, F., Rios‑Corripio, M. A., Loeza‑Corte, J. M., Rojas‑Lopez, M., & Hernandez‑Martinez, R. (2022). Coproduction of polyhydroxyalkanoates and exopolysaccharide by submerged fermentation using autochthonous bacterial strains. Chemical Papers, 76, 2419-2429.

Downloads

Published

16/03/2023

How to Cite

SIQUEIRA, E. C. de .; HOULLOU , L. M. . Sequential production of two biopolymers-polyhydroxyalkanoate and levan by microbial fermentation. Research, Society and Development, [S. l.], v. 12, n. 3, p. e25212340745, 2023. DOI: 10.33448/rsd-v12i3.40745. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/40745. Acesso em: 15 jan. 2025.

Issue

Section

Agrarian and Biological Sciences