The Role of Transcranial Magnetic Stimulation in Inducing Neuroplasticity in Post-Stroke Rehabilitation
DOI:
https://doi.org/10.33448/rsd-v12i11.43547Keywords:
Transcranial Magnetic Stimulation; Stroke; Therapeutics.Abstract
Introduction: Structural changes at the cellular level impact functional changes in the brain as a result of connections between the multiple networks responsible for the functions of the Central Nervous System. Stroke modifies the pattern of functional connectivity of brain regions, resulting in deficits intrinsic to the role now played by lost neurons. Objective: to understand, from the literature, the therapeutic implications of Transcranial Magnetic Stimulation in patients suffering from stroke. Methodology: this is a narrative review of the literature. Results and discussion: Ischemia in regions of the primary motor cortex results in an asymmetry between the cerebral hemispheres, characterized by increased recruitment and an abnormal reduction of cortical inhibition in the primary motor cortex contralateral to the injured hemisphere. This asymmetry in interhemispheric inhibition produces disparity in rehabilitation performance. Consequently, the recovery is centrally limited. Stimulation of the contralesional primary motor cortex and cerebellum improves muscle spasticity and limb dyskinesia. Repetition stimulation has demonstrated important usefulness in the treatment of post-stroke aphasia concomitant with speech therapy. Among changes in mental status, depression is the most common. Final considerations: The conditions secondary to the neuronal deficit caused by a stroke affect multiple dimensions of the patient's life. It is a safe, non-invasive strategy that produces good results. It is a promising device whose relevance should not be ignored or neglected.
References
Alexopoulos, G. S., Hoptman, M. J., Kanellopoulos, D., Murphy, C. F., Lim, K. O., & Gunning, F. M. (2012). Functional connectivity in the cognitive control network and the default mode network in late-life depression. Journal of Affective Disorders, 139(1), 56–65. https://doi.org/10.1016/j.jad.2011.12.002
Blesneag, A. V., Slăvoacă, D. F., Popa, L., Stan, A. D., Jemna, N., Isai Moldovan, F., & Mureșanu, D. F. (2015). Low-frequency rTMS in patients with subacute ischemic stroke: Clinical evaluation of short and long-term outcomes and neurophysiological assessment of cortical excitability. Journal of Medicine and Life, 8(3), 378–387.
Chen, J., Zeng, Y., Hong, J., Li, C., Zhang, X., & Wen, H. (2023). Effects of HF-rTMS on microglial polarization and white matter integrity in rats with poststroke cognitive impairment. Behavioural Brain Research, 439, 114242. https://doi.org/10.1016/j.bbr.2022.114242
Chen, Q., Shen, W., Sun, H., Zhang, H., Liu, C., Chen, Z., Yu, L., Cai, X., Ke, J., Li, L., Zhang, L., & Fang, Q. (2022). The effect of coupled inhibitory-facilitatory repetitive transcranial magnetic stimulation on shaping early reorganization of the motor network after stroke. Brain Research, 1790, 147959. https://doi.org/10.1016/j.brainres.2022.147959
Chen, R. (2000). Studies of human motor physiology with transcranial magnetic stimulation. Muscle & Nerve. Supplement, 9, S26-32. https://doi.org/10.1002/1097-4598(2000)999:9<::aid-mus6>3.0.co;2-i
Chung, S. W., Hoy, K. E., & Fitzgerald, P. B. (2015). Theta-burst stimulation: A new form of TMS treatment for depression? Depression and Anxiety, 32(3), 182–192. https://doi.org/10.1002/da.22335
Dong, L.-H., Pan, X., Wang, Y., Bai, G., Han, C., Wang, Q., & Meng, P. (2022). High-Frequency Cerebellar rTMS Improves the Swallowing Function of Patients with Dysphagia after Brainstem Stroke. Neural Plasticity, 2022, 6259693. https://doi.org/10.1155/2022/6259693
Santos, R. B. C., Galvão, S. C. B., Frederico, L. M. P., Amaral, N. S. L., Carneiro, M. I. S., de Moura Filho, A. G., Piscitelli, D., & Monte-Silva, K. (2019). Cortical and spinal excitability changes after repetitive transcranial magnetic stimulation combined to physiotherapy in stroke spastic patients. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 40(6), 1199–1207. https://doi.org/10.1007/s10072-019-03765-y
Du, J., Yang, F., Hu, J., Hu, J., Xu, Q., Cong, N., Zhang, Q., Liu, L., Mantini, D., Zhang, Z., Lu, G., & Liu, X. (2019). Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: Evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments. NeuroImage: Clinical, 21, 101620. https://doi.org/10.1016/j.nicl.2018.101620
Duan, H., Yan, X., Meng, S., Qiu, L., Zhang, J., Yang, C., & Liu, S. (2023). Effectiveness Evaluation of Repetitive Transcranial Magnetic Stimulation Therapy Combined with Mindfulness-Based Stress Reduction for People with Post-Stroke Depression: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 20(2), 930. https://doi.org/10.3390/ijerph20020930
Fahmy, E. M., & Elshebawy, H. M. (2021). Effect of High Frequency Transcranial Magnetic Stimulation on Recovery of Chronic Post-Stroke Aphasia. Journal of Stroke and Cerebrovascular Diseases, 30(8), 105855. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105855
Fingelkurts, A. A., & Fingelkurts, A. A. (2015). Altered Structure of Dynamic Electroencephalogram Oscillatory Pattern in Major Depression. Biological Psychiatry, 77(12), 1050–1060. https://doi.org/10.1016/j.biopsych.2014.12.011
Frey, J., Najib, U., Lilly, C., & Adcock, A. (2020). Novel TMS for Stroke and Depression (NoTSAD): Accelerated Repetitive Transcranial Magnetic Stimulation as a Safe and Effective Treatment for Post-stroke Depression. Frontiers in Neurology, 11, 788. https://doi.org/10.3389/fneur.2020.00788
Ge, R., Humaira, A., Gregory, E., Alamian, G., MacMillan, E. L., Barlow, L., Todd, R., Nestor, S., Frangou, S., & Vila-Rodriguez, F. (2022). Predictive Value of Acute Neuroplastic Response to rTMS in Treatment Outcome in Depression: A Concurrent TMS-fMRI Trial. The American Journal of Psychiatry, 179(7), 500–508. https://doi.org/10.1176/appi.ajp.21050541
George, M. S., Lisanby, S. H., & Sackeim, H. A. (1999). Transcranial magnetic stimulation: Applications in neuropsychiatry. Archives of General Psychiatry, 56(4), 300–311. https://doi.org/10.1001/archpsyc.56.4.300
Georgiou, A. M., Phinikettos, I., Giasafaki, C., & Kambanaros, M. (2020). Can transcranial magnetic stimulation (TMS) facilitate language recovery in chronic global aphasia post-stroke? Evidence from a case study. Journal of Neurolinguistics, 55, 100907. https://doi.org/10.1016/j.jneuroling.2020.100907
Hardy, S., Bastick, L., O’Neill-Kerr, A., Sabesan, P., Lankappa, S., & Palaniyappan, L. (2016). Transcranial magnetic stimulation in clinical practice. BJPsych Advances, 22(6), 373–379. https://doi.org/10.1192/apt.bp.115.015206
Huang, Y.-Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45(2), 201–206. https://doi.org/10.1016/j.neuron.2004.12.033
Huang, Y.-Z., Rothwell, J. C., Chen, R.-S., Lu, C.-S., & Chuang, W.-L. (2011). The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 122(5), 1011–1018. https://doi.org/10.1016/j.clinph.2010.08.016
Jiang, S., Zhan, C., He, P., Feng, S., Gao, Y., Zhao, J., Wang, L., Zhang, Y., Nie, K., Qiu, Y., & Wang, L. (2023). Neuronavigated repetitive transcranial magnetic stimulation improves depression, anxiety and motor symptoms in Parkinson’s disease. Heliyon, 9(8), e18364. https://doi.org/10.1016/j.heliyon.2023.e18364
Katai, S., Maeda, M., Katsuyama, S., Maruyama, Y., Midorikawa, M., Okushima, T., & Yoshida, K. (2023). Cortical reorganization correlates with motor recovery after low-frequency repetitive transcranial magnetic stimulation combined with occupational therapy in chronic subcortical stroke patients. Neuroimage: Reports, 3(1), 100156. https://doi.org/10.1016/j.ynirp.2023.100156
Lai, C. H. (2020). Effectiveness of repetitive transcranial magnetic stimulation and augmented reality in persons with chronic stroke – A pilot study. Clinical Neurophysiology, 131(4), e24–e25. https://doi.org/10.1016/j.clinph.2019.12.135
Li, D., Cheng, A., Zhang, Z., Sun, Y., & Liu, Y. (2021). Effects of low-frequency repetitive transcranial magnetic stimulation combined with cerebellar continuous theta burst stimulation on spasticity and limb dyskinesia in patients with stroke. BMC Neurology, 21(1), 369. https://doi.org/10.1186/s12883-021-02406-2
Li, K.-P., Wu, J.-J., Zhou, Z.-L., Xu, D.-S., Zheng, M.-X., Hua, X.-Y., & Xu, J.-G. (2023). Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients. Brain Sciences, 13(3), 451. https://doi.org/10.3390/brainsci13030451
Li, Y., Yu, Z., Zhou, X., Wu, P., & Chen, J. (2022). Aberrant interhemispheric functional reciprocities of the default mode network and motor network in subcortical ischemic stroke patients with motor impairment: A longitudinal study. Frontiers in Neurology, 13, 996621. https://doi.org/10.3389/fneur.2022.996621
Lioumis, P., & Rosanova, M. (2022). The role of neuronavigation in TMS–EEG studies: Current applications and future perspectives. Journal of Neuroscience Methods, 380, 109677. https://doi.org/10.1016/j.jneumeth.2022.109677
Low, T. A., Lindland, K., Kirton, A., Carlson, H. L., Harris, A. D., Goodyear, B. G., Monchi, O., Hill, M. D., & Dukelow, S. P. (2023). Repetitive transcranial magnetic stimulation (rTMS) combined with multi-modality aphasia therapy for chronic post-stroke non-fluent aphasia: A pilot randomized sham-controlled trial. Brain and Language, 236, 105216. https://doi.org/10.1016/j.bandl.2022.105216
Luk, K. Y., Ouyang, H. X., & Pang, M. Y. C. (2022). Low-Frequency rTMS over Contralesional M1 Increases Ipsilesional Cortical Excitability and Motor Function with Decreased Interhemispheric Asymmetry in Subacute Stroke: A Randomized Controlled Study. Neural Plasticity, 2022, 3815357. https://doi.org/10.1155/2022/3815357
Mao, J., Fan, K., Zhang, Y., Wen, N., Fang, X., Ye, X., & Chen, Y. (2023). 10 Hz repetitive transcranial magnetic stimulation (rTMS) May improve cognitive function: An exploratory study of schizophrenia patients with auditory hallucination. Heliyon, e19912. https://doi.org/10.1016/j.heliyon.2023.e19912
Menon, V. (2015). Large-Scale Functional Brain Organization. Em A. W. Toga (Org.), Brain Mapping (p. 449–459). Academic Press. https://doi.org/10.1016/B978-0-12-397025-1.00024-5
Mousa, H., & Albaker, S. (2021). Repetitive transcranial magnetic stimulation effects on hemiparetic limb spasticity in stroke patients: A double blinded randomized controlled trial. Journal of the Neurological Sciences, 429, 119716. https://doi.org/10.1016/j.jns.2021.119716
Padberg, F., & George, M. S. (2009). Repetitive transcranial magnetic stimulation of the prefrontal cortex in depression. Experimental Neurology, 219(1), 2–13. https://doi.org/10.1016/j.expneurol.2009.04.020
Pellicciari, M. C., Bonnì, S., Ponzo, V., Cinnera, A. M., Mancini, M., Casula, E. P., Sallustio, F., Paolucci, S., Caltagirone, C., & Koch, G. (2018). Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. Neuroimage, 365–378.
Peng, J.-J., Sha, R., Li, M.-X., Chen, L.-T., Han, X.-H., Guo, F., Chen, H., & Huang, X.-L. (2019). Repetitive transcranial magnetic stimulation promotes functional recovery and differentiation of human neural stem cells in rats after ischemic stroke. Experimental Neurology, 313, 1–9. https://doi.org/10.1016/j.expneurol.2018.12.002
Protasio, M. I. B., & Silva, J. P. L. da. (2020). Estimulação magnética transcraniana de repetição (EMTR) na redução do consumo de cocaína. Rev. Pesqui. Fisioter, 23–30.
Rao, J., Li, F., Zhong, L., Wang, J., Peng, Y., Liu, H., Wang, P., & Xu, J. (2022). Bilateral Cerebellar Intermittent Theta Burst Stimulation Combined With Swallowing Speech Therapy for Dysphagia After Stroke: A Randomized, Double-Blind, Sham-Controlled, Clinical Trial. Neurorehabilitation and Neural Repair, 36(7), 437–448. https://doi.org/10.1177/15459683221092995
Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Acta Paulista de Enfermagem, 20, v–vi. https://doi.org/10.1590/S0103-21002007000200001
Sharma, H., Vishnu, V. Y., Kumar, N., Sreenivas, V., Rajeswari, M. R., Bhatia, R., Sharma, R., & Srivastava, M. V. P. (2020). Efficacy of Low-Frequency Repetitive Transcranial Magnetic Stimulation in Ischemic Stroke: A Double-Blind Randomized Controlled Trial. Archives of Rehabilitation Research and Clinical Translation, 2(1), 100039. https://doi.org/10.1016/j.arrct.2020.100039
Tryon, W. W. (2014). Core Network Principles: The Explanatory Nucleus. Em W. W. Tryon (Org.), Cognitive Neuroscience and Psychotherapy (p. 125–222). Academic Press. https://doi.org/10.1016/B978-0-12-420071-5.00003-X
Ünlüer, N. Ö., Temuçin, Ç. M., Demir, N., Serel Arslan, S., & Karaduman, A. A. (2019). Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation on Swallowing Function and Quality of Life of Post-stroke Patients. Dysphagia, 34(3), 360–371. https://doi.org/10.1007/s00455-018-09965-6
Vosgerau, D. S. R., & Romanowski, J. P. (2014). Estudos de revisão: Implicações conceituais e metodológicas. Revista Diálogo Educacional, 14(41), 165–190.
Wang, C., Zeng, Q., Yuan, Z., Wang, W., & Shen, M. (2023). Effects of Low-Frequency (0.5 Hz) and High-Frequency (10 Hz) Repetitive Transcranial Magnetic Stimulation on Neurological Function, Motor Function, and Excitability of Cortex in Ischemic Stroke Patients. The Neurologist, 28(1), 11. https://doi.org/10.1097/NRL.0000000000000435
Xie, Y., Guan, M., Wang, Z., Ma, Z., Wang, H., & Fang, P. (2023). Alterations in brain connectivity patterns in schizophrenia patients with auditory verbal hallucinations during low frequency repetitive transcranial magnetic stimulation. Psychiatry Research, 115457. https://doi.org/10.1016/j.psychres.2023.115457
Yaşa, İ. C., Mavi̇ş, İ., Şalçi̇ni̇, C., & Mi̇di̇, İ. (2023). Comparing the efficiency of speech and language therapy and transcranial magnetic stimulation for treating Broca’s aphasia. Journal of Stroke and Cerebrovascular Diseases, 32(6), 107108. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107108
Zhu, Z., Zhu, H.-X., Jing, S.-W., Li, X.-Z., Yang, X.-Y., Luo, T.-N., Ye, S., Ouyang, X.-C., & Song, W.-W. (2022). Effect of transcranial magnetic stimulation in combination with citalopram on patients with post-stroke depression. Frontiers in Human Neuroscience, 16, 962231. https://doi.org/10.3389/fnhum.2022.962231
Zrenner, B., Zrenner, C., Gordon, P. C., Belardinelli, P., McDermott, E. J., Soekadar, S. R., Fallgatter, A. J., Ziemann, U., & Müller-Dahlhaus, F. (2020). Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS. Brain Stimulation, 13(1), 197–205. https://doi.org/10.1016/j.brs.2019.10.007
Zumbansen, A., Kneifel, H., Lazzouni, L., Ophey, A., Black, S. E., Chen, J. L., Edwards, D., Funck, T., Hartmann, A. E., Heiss, W.-D., Hildesheim, F., Lanthier, S., Lespérance, P., Mochizuki, G., Paquette, C., Rochon, E., Rubi-Fessen, I., Valles, J., Wortman-Jutt, S., & NORTHSTAR-study group. (2022). Differential Effects of Speech and Language Therapy and rTMS in Chronic Versus Subacute Post-stroke Aphasia: Results of the NORTHSTAR-CA Trial. Neurorehabilitation and Neural Repair, 36(4–5), 306–316. https://doi.org/10.1177/15459683211065448
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Lucas Ferrari da Silva Mendes; Isadora Fonseca Pinheiro; Verival Ferreira Dias dos Santos Júnior; Anne Kaline Marques Portela Leal; Mizael Siqueira de Araujo; Rita de Kássia Santos Costa; Lourivan Leal de Sousa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.