Altered threonine tyrosine kinase (TTK) expression is associated with adverse clinical outcomes in breast tumors: An in silico approach
DOI:
https://doi.org/10.33448/rsd-v12i13.44285Keywords:
Biomarkers; Breast Neoplasms; Computational biology.Abstract
The most common and lethal malignancy in women on a global scale remains breast cancer. Threonine tyrosine kinase (TTK) has been shown to be a critical mitotic spindle assembly checkpoint (SAC) molecule, resulting in correct chromosome segregation and maintenance of genomic stability. Therefore, the present study was carried out to evaluate the expression pattern of threonine tyrosine kinase (TTK) in breast cancer and its potential prognostic and predictive value for therapeutic response using bioinformatics tools. Web platforms containing clinical information and cDNA microarray data were selected to perform in silico analyzes of the potential threonine tyrosine kinase (TTK) marker. The threonine tyrosine kinase (TTK) gene was found to be differentially expressed in tumor samples when compared to healthy breast tissue samples (p<0.0001) and the TNBC subtype exhibited the highest expression of threonine tyrosine kinase (TTK) relative to the other subtypes (p<0.0001). Furthermore, Kaplan-Meier curves revealed that high threonine tyrosine kinase (TTK) levels corresponded to an unfavorable outcome for overall survival (p<0.0001), as well as for recurrence-free survival (p<0.0001) and distant metastasis-free survival (p<0.0001). Finally, differential expression of threonine tyrosine kinase (TTK) was related to the response of breast cancer patients to different therapies. Our cumulative results demonstrate that threonine tyrosine kinase (TTK) may be a promising biomarker for predicting prognosis and therapeutic response in breast cancer patients.
References
Afzal, S., Hassan, M., Ullah, S., Abbas, H., Tawakkal, F., & Khan, M. A. (2022). Breast Cancer; Discovery of Novel Diagnostic Biomarkers, Drug Resistance, and Therapeutic Implications. Frontiers in Molecular Biosciences, 9(2), 1–10. https://doi.org/10.3389/fmolb.2022.783450
Albogami, S. (2022). Comprehensive analysis of gene expression profiles to identify differential prognostic factors of primary and metastatic breast cancer. Saudi Journal of Biological Sciences, 29(7), 1–18. https://doi.org/10.1016/j.sjbs.2022.103318
Anderhub, S. J., Mak, G. W. Y., Gurden, M. D., Faisal, A., Drosopoulos, K., Walsh, K., Woodward, H. L., Innocenti, P., Westwood, I. M., Naud, S., Hayes, A., Theofani, E., Filosto, S., Saville, H., Burke, R., van Montfort, R. L. M., Raynaud, F. I., Blagg, J., Hoelder, S., & Linardopoulos, S. (2019). High proliferation rate and a compromised spindle assembly checkpoint confers sensitivity to the MPS1 inhibitor BOS172722 in triple-negative breast cancers. Molecular Cancer Therapeutics, 18(10), 1696–1707. https://doi.org/10.1158/1535-7163.MCT-18-1203
Bhushan, A., Gonsalves, A., & Menon, J. U. (2021). Current state of breast cancer diagnosis, treatment, and theranostics. Pharmaceutics, 13(5), 1–24. https://doi.org/10.3390/pharmaceutics13050723
Chandler, B. C., Moubadder, L., Ritter, C. L., Liu, M., Cameron, M., Wilder-Romans, K., Zhang, A., Pesch, A. M., Michmerhuizen, A. R., Hirsh, N., Androsiglio, M., Ward, T., Olsen, E., Niknafs, Y. S., Merajver, S., Thomas, D. G., Brown, P. H., Lawrence, T. S., Nyati, S., … Speers, C. (2020). TTK inhibition radiosensitizes basal-like breast cancer through impaired homologous recombination. Journal of Clinical Investigation, 130(2), 958–973. https://doi.org/10.1172/JCI130435
Chandrashekar, D. S., Karthikeyan, S. K., Korla, P. K., Patel, H., Shovon, A. R., Athar, M., Netto, G. J., Qin, Z. S., Kumar, S., Manne, U., Crieghton, C. J., & Varambally, S. (2022). UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 25(1), 18–27. https://doi.org/10.1016/j.neo.2022.01.001
Chen, F., Wu, P., Hu, H., Tian, D., Jiang, N., & Wu, C. (2018). Protein kinase TTK promotes proliferation and migration and mediates epithelial-mesenchymal transition in human bladder cancer cells. International Journal of Clinical and Experimental Pathology, 11(10), 4854–4861. http://www.ncbi.nlm.nih.gov/pubmed/31949560%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6962905
Chen, J., Wu, R., Xuan, Y., Jiang, M., & Zeng, Y. (2020). Bioinformatics analysis and experimental validation of TTK as a biomarker for prognosis in non-small cell lung cancer. Bioscience Reports, 40(10), 1–14. https://doi.org/10.1042/BSR20202711
Combes, G., Barysz, H., Garand, C., Gama Braga, L., Alharbi, I., Thebault, P., Murakami, L., Bryne, D. P., Stankovic, S., Eyers, P. A., Bolanos-Garcia, V. M., Earnshaw, W. C., Maciejowski, J., Jallepalli, P. V., & Elowe, S. (2018). Mps1 Phosphorylates Its N-Terminal Extension to Relieve Autoinhibition and Activate the Spindle Assembly Checkpoint. Current Biology, 28(6), 872–883. https://doi.org/10.1016/j.cub.2018.02.002
Elango, R., Vishnubalaji, R., Shaath, H., & Alajez, N. M. (2021). Molecular subtyping and functional validation of TTK, TPX2, UBE2C, and LRP8 in sensitivity of TNBC to paclitaxel. Molecular Therapy - Methods and Clinical Development, 20(3), 601–614. https://doi.org/10.1016/j.omtm.2021.01.013
Fekete, J. T., & Győrffy, B. (2019). ROCplot.org: Validating predictive biomarkers of chemotherapy/hormonal therapy/anti-HER2 therapy using transcriptomic data of 3,104 breast cancer patients. International Journal of Cancer, 145(11), 3140–3151. https://doi.org/10.1002/ijc.32369
Gao, Y.-H., QU, S.-S., Cao, L.-Q., & Yao, M. (2022). TTK predicts triple positive breast cancer prognosis and regulates tumor proliferation and invasion. Neoplasma, 69(2), 274–282. https://doi.org/10.4149/neo
Győrffy, B. (2023). Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. GeroScience, 45(3), 1889–1898. https://doi.org/10.1007/s11357-023-00742-4
Gyorffy, B., Bottai, G., Lehmann-Che, J., Kéri, G., Orfi, L., Iwamoto, T., Desmedt, C., Bianchini, G., Turner, N. C., de Thè, H., André, F., Sotiriou, C., Hortobagyi, G. N., Di Leo, A., Pusztai, L., & Santarpia, L. (2014). TP53 mutation-correlated genes predict the risk of tumor relapse and identify MPS1 as a potential therapeutic kinase in TP53-mutated breast cancers. Molecular Oncology, 8(3), 508–519. https://doi.org/10.1016/j.molonc.2013.12.018
Jézéquel, P., Gouraud, W., Ben Azzouz, F., Guérin-Charbonnel, C., Juin, P. P., Lasla, H., & Campone, M. (2021). Bc-GenExMiner 4.5: New mining module computes breast cancer differential gene expression analyses. Database, 27(3), 1–10. https://doi.org/10.1093/database/baab007
King, J. L., Zhang, B., Li, Y., Li, K. P., Ni, J. J., Saavedra, H. I., & Dong, J. T. (2018). TTK promotes mesenchymal signaling via multiple mechanisms in triple negative breast cancer. Oncogenesis, 7(69), 1–13. https://doi.org/10.1038/s41389-018-0077-z
Kuijt, T. E. F., Lambers, M. L. A., Weterings, S., Ponsioen, B., Bolhaqueiro, A. C. F., Staijen, D. H. M., & Kops, G. J. P. L. (2020). A Biosensor for the Mitotic Kinase MPS1 Reveals Spatiotemporal Activity Dynamics and Regulation. Current Biology, 30(19), 3862–3870. https://doi.org/10.1016/j.cub.2020.07.062
Lee, M. Y., Marina, M., King, J. L., & Saavedra, H. I. (2014). Differential expression of centrosome regulators in Her2+ breast cancer cells versus non-tumorigenic MCF10A cells. Cell Division, 9(1), 1–14. https://doi.org/10.1186/1747-1028-9-3
Maia, A. R. R., De Man, J., Boon, U., Janssen, A., Song, J. Y., Omerzu, M., Sterrenburg, J. G., Prinsen, M. B. W., Willemsen-Seegers, N., De Roos, J. A. D. M., Van Doornmalen, A. M., Uitdehaag, J. C. M., Kops, G. J. P. L., Jonkers, J., Buijsman, R. C., Zaman, G. J. R., & Medema, R. H. (2015). Inhibition of the spindle assembly checkpoint kinase TTK enhances the efficacy of docetaxel in a triple-negative breast cancer model. Annals of Oncology, 26(10), 2180–2192. https://doi.org/10.1093/annonc/mdv293
Maire, V., Baldeyron, C., Richardson, M., Tesson, B., Vincent-Salomon, A., Gravier, E., Marty-Prouvost, B., De Koning, L., Rigaill, G., Dumont, A., Gentien, D., Barillot, E., Roman-Roman, S., Depil, S., Cruzalegui, F., Pierré, A., Tucker, G. C., & Dubois, T. (2013). TTK/hMPS1 Is an Attractive Therapeutic Target for Triple-Negative Breast Cancer. PLoS ONE, 8(5), 1–15. https://doi.org/10.1371/journal.pone.0063712
Mason, J. M., Wei, X., Fletcher, G. C., Kiarash, R., Brokx, R., Hodgson, R., Beletskaya, I., Bray, M. R., & Mak, T. W. (2017). Functional characterization of CFI-402257, a potent and selective Mps1/TTK kinase inhibitor, for the treatment of cancer. PNAS, 114(12), 3127–3132. https://doi.org/10.1073/pnas.1700234114
Menezo, Y., Clement, P., Clement, A., & Elder, K. (2020). Methylation: An ineluctable biochemical and physiological process essential to the transmission of life. International Journal of Molecular Sciences, 21(23), 1–13. https://doi.org/10.3390/ijms21239311
Miao, Y., Konno, Y., Wang, B., Zhu, L., Zhai, T., Ihira, K., Kobayashi, N., Watari, H., Jin, X., Yue, J., Dong, P., & Fang, M. (2023). Integrated multi-omics analyses and functional validation reveal TTK as a novel EMT activator for endometrial cancer. Journal of Translational Medicine, 21(1), 1–23. https://doi.org/10.1186/s12967-023-03998-8
Rivera-Rivera, Y., Vargas, G., Jaiswal, N., Núñez-Marrero, A., Li, J., Chen, D. T., Eschrich, S., Rosa, M., Johnson, J. O., Dutil, J., Chellappan, S. P., & Saavedra, H. I. (2022). Ethnic and racial-specific differences in levels of centrosome-associated mitotic kinases, proliferative and epithelial-to-mesenchymal markers in breast cancers. Cell Division, 17(6), 1–14. https://doi.org/10.1186/s13008-022-00082-3
Schick, J., Ritchie, R. P., & Restini, C. (2021). Breast Cancer Therapeutics and Biomarkers: Past, Present, and Future Approaches. Breast Cancer: Basic and Clinical Research, 15(3), 1–19. https://doi.org/10.1177/1178223421995854
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
Tang, D., Zhao, X., Zhang, L., Wang, Z., & Wang, C. (2019). Identification of hub genes to regulate breast cancer metastasis to brain by bioinformatics analyses. Journal of Cellular Biochemistry, 120(6), 9522–9531. https://doi.org/10.1002/jcb.28228
Tang, J., Lu, M., Cui, Q., Zhang, D., Kong, D., Liao, X., Ren, J., Gong, Y., & Wu, G. (2019). Overexpression of ASPM, CDC20, and TTK Confer a Poorer Prognosis in Breast Cancer Identified by Gene Co-expression Network Analysis. Frontiers in Oncology, 9(4), 1–14. https://doi.org/10.3389/fonc.2019.00310
Xie, Y., Wang, A., Lin, J., Wu, L., Zhang, H., Yang, X., Wan, X., Miao, R., Sang, X., & Zhao, H. (2017). Mps1/TTK: A novel target and biomarker for cancer. Journal of Drug Targeting, 25(2), 112–118. https://doi.org/10.1080/1061186X.2016.1258568
Xu, Q., Xu, Y., Pan, B., Wu, L., Ren, X., Zhou, Y., Mao, F., Lin, Y., Guan, J., Shen, S., Zhang, X., Wang, C., Zhong, Y., Zhou, L., Liang, Z., Zhao, H., & Sun, Q. (2016). TTK is a favorable prognostic biomarker for triple-negative breast cancer survival. Oncotarget, 7(49), 81815–81829. https://doi.org/10.18632/oncotarget.13245
Zaman, G. J. R., De Roos, J. A. D. M., Libouban, M. A. A., Prinsen, M. B. W., De Man, J., Buijsman, R. C., & Uitdehaag, J. C. M. (2017). TTK inhibitors as a targeted therapy for CTNNB1 (β-catenin) mutant cancers. Molecular Cancer Therapeutics, 16(11), 2609–2617. https://doi.org/10.1158/1535-7163.MCT-17-0342
Zhang, X., Huang, L., Sun, J., Liu, J., & Zong, Y. (2023). Monopolar spindle 1 contributes to tamoxifen resistance in breast cancer through phosphorylation of estrogen receptor α. Breast Cancer Research and Treatment, 202(9), 595–606. https://doi.org/10.1055/s-0037-1608898
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gustavo Barboza Roberto da Silva; Beatriz Silva Cruz; Julia Gonçalves Vieira; Julia Montorso Uzum; Renan Gomes do Nascimento; Gustavo José Vasco Pereira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.