Electric power generation in wind farms with pumping kites: levelized cost of energy and sensitivity analysis
DOI:
https://doi.org/10.33448/rsd-v9i7.4528Keywords:
Levelized cost of energy; Wind energy; Wind energy with tethered airfoils; High altitude wind energy.Abstract
This research aims to analyze the levelized level energy cost of energy (LCOE) of wind farms with tethered airfoils. For this, it was considering the technical characteristics of the system, the location of operation, the necessary investments and the characteristics of the Brazilian market, to analyze the levelized cost of energy of three wind farm scenarios: Classic wind farm, Wind farm with tethered airfoils operating in Pumping Kite mode and a hybrid park with the two park configurations studied. The research makes use of the LCOE method. The results indicate that the technology with wired airfoils requires less investment and that wind farms with this technology can generate more energy than a classic wind farm of the same nominal power, since the wired airfoils can exploit high altitude winds, where they are more frequent and strong. The results also indicate that wind farms with wired airfoils are not only economically viable, but produce energy at a level cost, well below the values currently practiced for the sale of energy in the domestic market.
References
Ahrens, U., Diehl, M., & Schmehl, R. (2013). Airborne wind energy: Springer Science & Business Media.
Archer, C. L., & Caldeira, K. (2009). Global assessment of high-altitude wind power. Energies, 2(2), 307-319.
Brealey, R. (2010). Principles of corporate finance, concise: McGraw-Hill Higher Education.
Calisti, M., & Creemwood, D. (2008). Goal-Oriented Autonomic Process Modeling and Execution for Next Generation Networks. In S. VanderMeer, M. Burgess, & S. Denazis (Eds.), Modelling Autonomic Communications Environments (Vol. 5276, pp. 38-49). Berlin: Springer-Verlag Berlin.
Cherubini, A., Papini, A., Vertechy, R., & Fontana, M. (2015). Airborne Wind Energy Systems: A review of the technologies. Renewable and Sustainable Energy Reviews, 51, 1461-1476.
De Lellis, M., Mendonça, A., Saraiva, R., Trofino, A., & Lezana, Á. (2016). Electric power generation in wind farms with pumping kites: An economical analysis. Renewable energy, 86, 163-172.
de Souza Mendonça, A. K., & Bornia, A. C. (2020). Wind speed analysis based on the logarithmic wind shear model: a case study for some brazilian cities. Research, Society and Development, 9(7), 298973984.
Díaz-Méndez, R., Rasheed, A., Peillón, M., Perdigones, A., Sánchez, R., Tarquis, A. M., & García-Fernández, J. L. (2014). Wind pumps for irrigating greenhouse crops: Comparison in different socio-economical frameworks. Biosystems engineering, 128, 21-28.
Diehl, M. (2013). Airborne wind energy: Basic concepts and physical foundations Airborne wind energy (pp. 3-22): Springer.
Fagiano, L., Milanese, M., & Piga, D. (2012). Optimization of airborne wind energy generators. International Journal of robust and nonlinear control, 22(18), 2055-2083.
Leen, J. B., Yu, X. Y., Gupta, M., Baer, D. S., Hubbe, J. M., Kluzek, C. D., . . . Hubbell, M. R., 2nd. (2013). Fast in situ airborne measurement of ammonia using a mid-infrared off-axis ICOS spectrometer. Environ Sci Technol, 47(18), 10446-10453. doi:10.1021/es401134u.
Malheiro, A., Castro, P. M., Lima, R. M., & Estanqueiro, A. (2015). Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems. Renewable energy, 83, 646-657.
Mendonça, A. K. d. S. (2017). Modelo para identificar as condições que determinam a viabilidade econômica de um projeto de geração de energia com uso de aerofólios cabeados. 179 p. Tese (Doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Produção, Florianópolis. Available in: http://www.bu.ufsc.br/teses/PEPS5660-T.pdf.
Mendonça, A. K. d. S., Vaz, C. R., Lezana, Á. G. R., Anacleto, C. A., & Paladini, E. P. (2017). Comparing patent and scientific literature in airborne wind energy. Sustainability, 9(6), 915.
OECD. (2005). Projected Costs of Generating Electricity – 2005 Edition. International Energy Agency and Nuclear Energy Agency, France, 2005.
OECD. (2010). Projected Costs of Generating Electricity – 2010 Edition. International Energy Agency and Nuclear Energy Agency, France, 2010.
OECD. (2015). Projected Costs of Generating Electricity – 2015 Edition. International Energy Agency and Nuclear Energy Agency, France, 2015.
Reichelstein, S., & Yorston, M. (2013). The prospects for cost competitive solar PV power. Energy Policy, 55, 117-127.
Short, W., Packey, D. J., & Holt, T. (1995). A manual for the economic evaluation of energy efficiency and renewable energy technologies. University Press of the Pacific, 1995. ISBN 1410221059.
Webster, B. (2017). First wind farm to be built powered by kites, Tech.rep.,The Times. Acessed in https://www.thetimes.co.uk/article/first-wind-farm-to-be-built-powered-by-kites-wrjcmfldk.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.