Inoculation of plant growth-promoting bacteria in Urochloa Ruziziensis
DOI:
https://doi.org/10.33448/rsd-v9i8.5978Keywords:
Endophytic bactéria; Diazotrophic bactéria; Grasses; Rhizobacteria.Abstract
Using the potential of growth-promoting bacteria in the growth and perennially of pastures can be a new strategy for managing pastures, minimizing the chances of degradation, and improving productivity and forage quality. Thus, the objective was to evaluate the production of Urochloa ruziziensis inoculated with bacteria that promote plant growth and nitrogen fertilization. Leaf mass production, total forage mass production, root production and chlorophyll content of U. ruziziensis cultivated in soil originating from sandstone and in a sterile substrate were evaluated, inoculated with five BPCV (Azospirillum brasilense Ab-V5 and Ab-V6, Pseudomonas fluorescens CCTB 03 and ET76 and Pantoea ananatis AMG521), in addition to uninoculated control and in combination with N-fertilizer doses (zero, 50 and 100 kg ha-1 of N), in a 6x3 factorial scheme under greenhouse conditions. In general, bacteria when inoculated without the addition of N-fertilizers (zero dose) were more efficient in the production of leaf forage mass in the different cuts, total forage mass, root mass production and crude protein concentration. It is noteworthy that inoculation with P. fluorescens and P. ananatis AMG521 proved to be more effective than the other strains used in the studied variables. The inclusion of bacteria that promote plant growth as pasture management is an excellent tool for growing ruziziensis grass with an increase in the production of forage mass and root mass, in addition to reducing the consumption of nitrogen fertilizers.
References
Aarab, S., Arakrak, A., Ollero, F.J., Gomes, D.F., Ribeiro, R.A., & Hungria, M. (2016) Draft genome sequence of Pseudomonas fluorescens strain ET76, isolated from rice rhizosphere from Northwestern Morocco. Genome Announcements 4, e00356-16.
Aguirre, P. F., Olivo, C. J., Rodrigues, P. F., Falk, D. R., Adams, C. B., & Schiafino, H. P. (2018). Forage yield of Coastcross-1 pastures inoculated with Azospirillum brasilense. Acta Scientiarum. Animal Sciences,40, e36392.
Alves, J. J. A., Araújo, M. A., & Nascimento, S. S. (2009). Degradação da caatinga: uma investigação ecogeográfica. Revista Caatinga, 22(3), 126-135.
Arora, N. K., Tewari, S., & Singh, R. (2013). Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In Plant microbe symbiosis: Fundamentals and advances (pp. 411-449). Springer, New Delhi.
Bardgett, R. D., and Wardle, D. A. (2010). Above-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change. Oxford: Oxford University Press.
Bartchen, A., Fiori, C. C. L., Watanabe, S. H., & Guarido, R. C. (2010). Efeito da inoculação de Azospirillum brasilense na produtividade do milho (Zea mays). Revista Campo Digit@l, 5(1), 56-59.
Batista, K. (2009). Resposta do capim-marandu a combinações de doses de nitrogênio e enxofre. Trabalho de conclusão de curso (Mestrado) na Escola Superior de Agricultura ―Luiz de Queiroz. São Paulo: Piracicaba.
Canto, M. W., Hoeschl, A. R., & Bona Filho, A. (2013). Características do pasto e eficiência agronômica de nitrogênio em capim-tanzânia sob pastejo contínuo, adubado com doses de nitrogênio. Ciência Rural, 43(4), 682-688.
Cassán, F., & Diaz-Zorita, M. (2016). Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology & Biochemistry, 103, 117-130.
Cassán, F., Maiale, S., & Masciarelli, O. (2009) Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation.
European Journal of Soil Biology, 45, 12–19.
Cassán, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., & Luna, V. (2008). Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology,45(1), 28-35.
Dias-Filho, M. B. (2014). Diagnóstico das pastagens no Brasil. Embrapa Amazônia Oriental.
Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Okon, Y., & Vanderleyden, J. (2002) Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains and development and nitrogen up take of spring wheat and grain maize. Biology and Fertility of Soils, 36, 284–297.
Fukami, J., Abrantes, J. L. F., del Cerro, P., & Nogueira, M. A. (2018). Revealing strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6. Archives of Microbiology, 200, 47–56.
Fukami, J., Ollero, F. J., Megías, M., & Hungria, M. (2017). Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express, 7, 153–166.
Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131–140.
Guimarães, G. G. F. (2011). Substâncias húmicas como aditivos para o controle da volatilização de amônia proveniente da ureia. Trabalho de Conclusão de Curso (Mestrado) - Universidade Federal de Viçosa. Viçosa.
Gupta, K., Dey, A., & Gupta, B. (2013) Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum 35, 2015–2036.
Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol, 7(2), 096-102.
Hungria, M. (2011). Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo. Embrapa Soja.
Hungria, M., Nogueira, M. A., & Araújo, R. S. (2016). Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems and Environment. 221, 125–131.
Hungria, M., Campo, R. J., Souza, E. M. S., & Pedrosa, F. O. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, 331(1), 413-425.
Leite, R. D. C., dos Santos, J. G., Silva, E. L., Alves, C. R., Hungria, M., Leite, R. D. C., & dos Santos, A. C. (2018). Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum brasilense. Crop and Pasture Science, 70(1), 61-67.
Macedo, M. C. M. (2005) Pastagens no ecossistema Cerrado: evolução das pesquisas para o desenvolvimento sustentável. In: Reunião anual da sociedade brasileira de zootecnia. Goiânia: SBZ/UFG.
Megías, E., Megías, M., Ollero, F. J., & Hungria, M. (2016). Draft genome sequence of Pantoea ananatis strain AMG521, a rice plant growth-promoting bacterial endophyte isolated from the Guadalquivir marshes in southern Spain. Genome Announcements, 4, e01681-15.
Morais, J. P., Cancellier, L. L., Afférri, F. S., Carvalho, E. V., Camilo, A., & Uate, J. V. (2012). Crescimento Inicial e correlação com produtividade em diferentes genótipos de milho e doses de nitrogênio. In: Congresso Nacional De Milho E Sorgo, Águas de Lindóia-SP. Anais, 29(1).
Nepomuceno, M. P., Varela, R. M., Alves, P. L. C. A., & Martins, J. V. F. (2012). Períodos de dessecação de Urochloa ruziziensis e seu reflexo na produtividade da soja RR. Planta Daninha, 30(3), 557-65.
Okon, Y., & Labandera-Gonzalez, C. A. (1994). Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol. Biochem, 12(26), 1591-1601.
Pedreira, B. C. E., Barbosa, P. L., Pereira, L. E. T., Mombach, M. A., Domiciano, L. F., Pereira, D. H., & Ferreira, A. Tiller density and tillering on Brachiaria brizantha cv. Marandu pastures inoculated with Azospirillum brasilense. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 69(4).
Pimentel, R. M., Bayão, G. F. V., Lelis, D. L., Cardoso, A. J. S., Saldarriaga, F. V., Melo, C. C. V., Souza, F. B. M., Pimente, A. C. S., Fonseca, D. M., & Santos, M. E. R. (2016). Ecofisiologia de plantas forrageiras. PUBVET, 10(9), 666-679.
Reis Junior, F. B., Machado, C. T. T., Machado, A. T., & Sodek, L. Inoculação de Azospirillum amazonense em dois genótipos de milho sob diferentes regimes de nitrogênio. Revista Brasileira de Ciência do Solo, 32(3), 1139- 1146.
Reis, R. A., Ruggieri, A. C., Oliveira, A. A., Azenha, M. V., & Casagrande, D. R. (2012). Suplementação como estratégia de produção de carne de qualidade em pastagens tropicais. Revista Brasileira de Saúde e Produção Animal, 14, 642-655.
Rochette, P., Angers, D. A., Chantigny, M. H., & Macdonald, J. D. Ammonia volatilization following surface application of urea to tilled and no-till soils: a laboratory comparison. Soil and Tillage Research, 103(2), 310-315, 2009.
Silva, R. G., Fernandez, F. H., & Lopes, M. N. (2013). Manejo de pasturas bajo riego y fertilización en sistemas de producción intensivos en condiciones tropicales. Cuadernos Científicos Girarz, 13, 143-154.
Taiz, L., & Zeiger, E. (2013). ‘Fisiologia vegetal.’ (Artemed: Porto Alegre, RS, Brazil). treated pig slurries and composts. Soil Biology and Biochemistry, 38(9), 2782-2793.
Vallejo, A., Skiba, U. M., García-Torres, L., Arce, A., López-Fernández, & S., Sánchezmartín, L. (2006). Nitrogen oxides emission from soils bearing a potato crop as influenced by fertilizarion with Azospirillum sp. Soil Biology and Biochemistry, 16 (9), 2782-2793.
Van Groenigen, J. W., Huygens, D., Boeckx P., Kuyper T. W., Lubbers I. M., Rütting T., & Groffman, P. M. (2015). The soil N cycle: new insights and key challenges. Soil, 1(1), 235-245.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Camila Fernandes Domingues Duarte, Ulysses Cecato, Mariangela Hungria, Henrique Jorge Fernandes, Thiago Trento Biserra, Divaney Mamédio, Sandra Galbeiro, Marco Antônio Nogueira
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.