Bayesian transformed symmetric models to describe the height growth of eucalyptus urophylla.models

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.6448

Keywords:

Energetic forests; Chapman-Richards model; Data transformation.

Abstract

It is presented in this work the growth model nonlinear Chapman-Richards with distribution of errors following the new class of symmetric models processed and Bayesian inference for the parameters. The objective was to apply this structure, via Metropolis-Hastings algorithm, in order to select the equation that best predicted heights of clones of Eucalyptus urophilla experiment established at the Agronomic Institute of Pernambuco (IPA) in the city of Araripina. The Gypsum Pole of Araripe is an industrial zone, located on the upper interior of Pernambuco, which consumes large amount of wood from native vegetation (caatinga) for calcination of gypsum. In this scenario, there is great need for a solution, economically and environmentally feasible that allows minimizing the pressure on native vegetation. The generus Eucalyptus presents itself as an alternative for rapid development and versatility. The height has proven to be an important factor in prognosis of productivity and selection of clones best adapted. One of the main growth curves, is the Chapman-Richards model with normal distribution for errors. However, some alternatives have been proposed in order to reduce the influence of atypical observations generated by this model. The data were taken from a plantation, with 72 months. After selecting the best equation, was shown some convergence of graphics and other parameters that show the fit to the data model transformed symmetric Student’s t with 5 degrees of freedom in the parameters using Bayesian inference.

References

Ahelegbey, D. F., Billio, M., & Casarin, R. (2016). Sparse graphical vector autoregression: a Bayesian approach. Annals of Economics and Statistics/Annales d'Économie et de Statistique, (123/124), 333-361.

Araujo, S. M. S. D. (2004). O Pólo Gesseiro do Araripe: unidades geo-ambientais e impactos da mineração. TESE (Doutorado em Geociências) - Universidade Estadual de Campinas, Campinas, 2004, 305.

Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-43.

Box, G. E., & Tiao, G. C. (2011). Bayesian inference in statistical analysis (Vol. 40). John Wiley & Sons.

Carvalho Araujo, S. K., Oliveira, D. R., da Silva, T. J., Barbosa, J. C., & Gava, M. (2016). Desempenho acústico de painéis de gesso incorporados com fibras de celulose. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 20(1), 456-463.

Chatfield, C., & Xing, H. (2019). The analysis of time series: an introduction with R. CRC press.

Cordeiro, G. M., & Andrade, M. G. (2011). Transformed symmetric models. Statistical Modelling, 11(4), 371-388.

Cordeiro, G. M., & de Andrade, M. G. (2009). Transformed generalized linear models. Journal of Statistical Planning and Inference, 139(9), 2970-2987.

Cowles, M. K., & Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: a comparative review. Journal of the American Statistical Association, 91(434), 883-904.

Cysneiros, F. J. A., Paula, G. A., & Galea, M. (2005). Modelos simétricos aplicados. Escola de Modelos de Regressao, 9.

Dey, D. K., Ghosh, S. K., & Mallick, B. K. (Eds.). (2000). Generalized linear models: A Bayesian perspective. CRC Press.

Ferreira, F. C. (2017). Estudo de caracterização do gesso para revestimento produzido no Polo Gesseiro do Araripe (Master's thesis, Universidade Federal de Pernambuco).

Gadelha, F. H. D. L., Silva, J. A. A. D., Ferreira, R. L. C., Melo, I. V. D., Jorge, D. L., Tavares, J. A., & Silva, S. P. R. D. (2012). Rendimento volumétrico e energético de clones de híbridos de Eucalyptus sp. no polo gesseiro do Araripe, PE. Ciência Florestal, 22(2), 331-341.

Gatto, D. A., Santini, E. J., Haselein, C. R., & Durlo, M. A. (2003). Características da lenha produzida na região da quarta colônia de imigracão italiana do Rio Grande Do Sul. Ciência Florestal, 13(2), 7-16.

Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American statistical association, 85(410), 398-409.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 7(4), 457-472.

Geyer, C. J. (1992). Practical markov chain monte carlo. Statistical science, 473-483.

Gilks, R., & Richardson, S. (1996). Spiegelhalter. Markov Chain Monte Carlo in practice.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.

Little, R. J., & Rubin, D. B. (2019). Statistical analysis with missing data (Vol. 793). John Wiley & Sons.

Lima, C. G. D. R., Carvalho, M. D. P., Narimatsu, K. C. P., Silva, M. G. D., & Queiroz, H. A. D. (2010). Atributos físico-químicos de um Latossolo do cerrado brasileiro e sua relação com características dendrométricas do eucalipto. Revista Brasileira de Ciência do Solo, 34(1), 163-173.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6), 1087-1092.

Ntzoufras, I. (2009). Bayesian Modeling Using WinBUGS.,(Wiley: New York.).

Paulino, C. D., Turkman, M. A. A., & Murteira, B. (2003). Estatística bayesiana Fundação Clouste Gulbenkian Lisboa.

Pericchi, L. R. A. (1981). Bayesian Approach to Transformations to Normality. Biometrika Series A, London, 68, 1, 35-43.

Schneider, P. R., Schneider, P. S. P., & Souza, C. A. M. (2009). Análise de regressão aplicada à engenharia florestal. Santa Maria, Universidade Federal de Santa Maria, 294.

Schwarz, G. (1978). Estimating the dimension of the model. Annals of Statistics, Hayward, 6 461 – 464.

Published

22/07/2020

How to Cite

BARROS, K. N. N. de O.; ALBUQUERQUE, M. A. de; SILVA, J. A. A. da. Bayesian transformed symmetric models to describe the height growth of eucalyptus urophylla.models. Research, Society and Development, [S. l.], v. 9, n. 8, p. e820986448, 2020. DOI: 10.33448/rsd-v9i8.6448. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/6448. Acesso em: 22 nov. 2024.

Issue

Section

Exact and Earth Sciences