The Millennials Culture: behavioral mapping in estimating generations using a mathematical model and artificial intelligence

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7772

Keywords:

Company; Generations; Mathematical models.

Abstract

Nowadays, organizations face intense changes at all times, making people management increasingly strategic and prone to seek tools to analyze the individuals of the organization, to continuously decipher the expectations of employees. These impacts came together with the dynamic market and globalization scenario, which led companies to study anticipations of business movements, from the economy to human capital. The shock of generations is one of the elements related to the transition of the new digital age, in this dynamic we can observe the old and the current values of the population, which makes it more and more challenging to keep a young employee in the company. Considered one of the greatest challenges for people management, talent retention presents particular needs. In this context, the objective of this work was to develop a mathematical model for structuring a software for mapping generational characteristics, aiming to improve the techniques of people management in an ophthalmic input company in the city of Tupã - Brazil. For data collection, a questionnaire was applied and applied to 65 employees. The data were tabulated and normalized in an Microsoft Excel spreadsheet to perform the data analysis in a comparative way, with the date of birth and the answers obtained. The results of the research carried out demonstrated that the behavior can be changeable over time, according to the individual's inserted environment, not coinciding with the behavioral characteristics of his time.

Author Biographies

Luís Roberto Almeida Gabriel Filho, Universidade Estadual Paulista

Possui graduação em Matemática pela FCT / UNESP (2000), mestrado em Matemática pelo ICMC / USP (2004), doutorado (2007) e pós-doutorado em Agronomia / Energia na Agricultura pela FCA / UNESP, Habilitação em Matemática Aplicada e Computacional pela UNESP ( 2015). Atualmente é Professor Associado da FCE / UNESP e professor permanente dos Programas de Pós-Graduação em Agronegócio e Desenvolvimento da FCE / UNESP e de Agronomia / Irrigação e Drenagem da FCA / UNESP. Tem experiência na área de Engenharia Matemática e Agrícola, com ênfase em Modelagem Matemática, Sistemas Dinâmicos, Energização Rural e Agricultura Irrigada, atuando principalmente nos seguintes temas: matemática aplicada e computacional, e sistemas fuzzy aplicados às ciências agrícolas.

Renato Dias Baptista, Universidade Estadual Paulista

Professor Associado do Departamento de Administração de Empresas da Universidade Estadual Paulista, UNESP

References

Baldrati, B. (2012). Valorizar o funcionário é o segredo da Volvo, diz chefe de RH . Recuperado de https://www.gazetadopovo.com.br/economia/valorizar-o-funcionario-eo-segredo-da-volvo-diz-chefe-de-rh-2zu1ywo0kyv862qqx3e8gqvri/.

Bonini Neto, A., Bonini, C. S. B., Bisi, B. S., Reis, A. R., & Coletta, L. F. S. (2017). Artificial Neural Network for Classification and Analysis of Degraded Soils. IEEE Latin America Transactions, 15(3), 503–509. https://doi.org/10.1109/TLA.2017.7867601

Bonini Neto, A., Bonini, C. S. B., Reis, A. R., Piazentin, J. C., Coletta, L. F. S., Putti, F. F., Heinrichs, R., & Moreira, A. (2019). Automatic Recovery Estimation of Degraded Soils by Artificial Neural Networks in Function of Chemical and Physical Attributes in Brazilian Savannah Soil. Communications in Soil Science and Plant Analysis, 50(14), 1785–1798. https://doi.org/10.1080/00103624.2019.1635144

Chitero, J. G. M., Bonini Neto, A., Bonini, C. S. B., Heinrichs, R., Soares Filho, C. V., Mateus, G. P., Bisi, B. S., Costa, N. R., Piazentin, J. C., Meirelles, G. C., & Gabriel Filho, L. R. A. (2020). Analysis of the physical recovery of degraded soils via Artificial Neural Networks using a graphical interface. Research, Society and Development, 9(7), e257973719. https://doi.org/10.33448/rsd-v9i7.3719

Creswell, J. (2007). Projeto de Pesquisa: Métodos qualitativo, quantitativo e misto. 2. ed. Porto Alegre: Artmed.

Dutra, J. S. (2001). Gestão do desenvolvimento e da carreira por competência. In Gestão por competências : um modelo avançado para o gerenciamento de pessoas. São Paulo: Gente.

Eyerman, R.; Turner, B. (1998). Outline of a Theory of Generations. European Journal of Social Theory, v.1, n.1, p. 91-94. Doi:10.1177/136843198001001007

Gabriel Filho LRA, Cremasco CP, Putti FF, Chacur MGM (2011) Application of fuzzy logic for the evaluation of livestock slaughtering. Engenharia Agrícola, 31(4):813-825. DOI: http://dx.doi.org/10.1590/S0100-69162011000400019

Gabriel Filho LRA, Putti FF, Cremasco CP, Bordin D, Chacur MGM, Gabriel LRA (2016) Software to assess beef cattle body mass through the fuzzy body mass index. Engenharia Agrícola, 36(1): 179-193. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v36n1p179-193/2016

Gabriel Filho, L. R. A., Pigatto, G. A. S., & Lourenzani, A. E. B. S. (2015). Fuzzy rule-based system for evaluation of uncertainty in cassava chain. Engenharia Agrícola, 35(2), 350-367. DOI: 10.1590/1809-4430-Eng.Agric.v35n2p350-367/2015

Gil, A. C. (2008) . Métodos e técnicas de pesquisa social. (6a ed.), São Paulo: Atlas

Howe, R., & Strauss, W. (2000). Millennials rising: The next great generation. Vintage books.USA, New York.

Kasabov, N. K. (1998). Foundations of neural networks, fuzzy systems and knowledge engineering. (2a ed.) Massachusetts: The MIT Press.

Ladeira, W. J.(2010). Estilos de Tomada de Decisão: Uma Investigação em Gerações Diferentes. Revista de Administração da UNIMEP., 8(3), 184-206. Doi: 10.15600/1679-5350

Lima, R. (2012). Perfil das Gerações no Brasil: as Gerações X, Y, Z e seus perfis políticos. São Paulo: Baraúna.

Malafaia, G. S. (2011). Gestão estratégica de pessoas em ambientes multigeracionais. In: Congresso Nacional De Excelência Em Gestão, Rio de Janeiro. Recuperado em 22 de março de 2020, de http://www.inovarse.org/sites/default/files/T11_0452_2151.pdf.

Martínez, M. P., Cremasco, C. P., Gabriel Filho, L. R. A., Braga Junior, S. S., Bednaski, A. V., Quevedo-Silva, F., & Padgett, R. C. M. L. (2020). Fuzzy inference system to study the behavior of the green consumer facing the perception of greenwashing. Journal of Cleaner Production, 242(1), 116064. DOI: 10.1016/j.jclepro.2019.03.060

Mathworks. Matlab (MATrix LABoratory). Recuperado de http://www.mathworks.com

Minitab 18 Statistical Software (2017). [Computer software]. State College, PA: Minitab, Inc. (www.minitab.com)

Oliveira, S. (2012). Jovens para sempre: como entender os conflitos das gerações. São Paulo: Integrare.

Putti, F. F., Gabriel Filho, L. R. A., Cremasco, C. P., Bonini Neto, A., Bonini, C. S. B., & Reis, A. R. (2017). A Fuzzy mathematical model to estimate the effects of global warming on the vitality of Laelia purpurata orchids. Mathematical Biosciences, 288, 124-129. DOI: 10.1016/j.mbs.2017.03.005

Putti, F. F., Gabriel Filho, L. R. A., Silva, A. O., Ludwig, R., & Cremasco, C. P. (2014). Fuzzy logic to evaluate vitality of catasetum fimbiratum species (Orchidacea). Irriga, 19(3), 405-413. DOI: 10.15809/irriga.2014v19n3p405

Revista Exame. (2018). Você odeia os processos seletivos comuns? Estas startups também. Recuperado de https://exame.abril.com.br/especiais/voce-odeia-os-processos-seletivos-comuns-estas-startups-tambem/.

Souza, A. V., Bonini Neto, A., Piazentin, J. C., Junior, B. J. D., Gomes, E. P., Bonini, C. S. B., & Putti, F. F. (2019). Artificial neural network modelling in the prediction of bananas’ harvest. Scientia Horticulturae, 257, 108724. https://doi.org/10.1016/j.scienta.2019.108724

Teixeira, G. M; Silveira, A. C; Neto, C. P. S; Oliveira, G. (2010). A Gestão Estratégica de Pessoas. Rio de Janeiro: FGV Editora.

Tomaz, R. (2014). The invention of the tweens: youth, culture and media. Intercom - Revista Brasileira de Ciências da Comunicação, 177-202. doi: 10.1590/1809-5844 20148

Veloso, E. F. R., Dutra, J. S., & Nakata, L. E. (2008). Percepção sobre carreiras inteligentes: Diferenças entre as gerações Y, X e Baby boomers. XXXII Anais do EnAnpad. Rio de Janeiro. Recuperado de http://www.anpad.org.br/diversos/down_zips/38/GPR-A2030.pdf.

Veloso, E. F. R.; Silva, R. C.; Dutra, J. S. (2012). Diferentes Gerações e Percepções sobre Carreiras Inteligentes e Crescimento Profissional nas Organizações. Revista Brasileira de Orientação Profissional, São Paulo, 13(2), 197-207. Recuperado de http://pepsic.bvsalud.org/pdf/rbop/v13n2/07.pdf.

Viais Neto D. S., Cremasco, C. P., Bordin D., Putti, F. F., Silva Junior J. F., & Gabriel Filho, L. R. A. (2019). Fuzzy modeling of the effects of irrigation and water salinity in harvest point of tomato crop. Part I: description of the method. Engenharia Agrícola, 39(3), 294-304. DOI: 10.1590/1809-4430-eng.agric.v39n3p294-304/2019

Viais Neto D. S., Cremasco, C. P., Bordin D., Putti, F. F., Silva Junior J. F., & Gabriel Filho, L. R. A. (2019). Fuzzy modeling of the effects of irrigation and water salinity in harvest point of tomato crop. Part II: application and interpretation. Engenharia Agrícola, 39(3), 305-14. DOI: 10.1590/1809-4430-eng.agric.v39n3p305-314/2019

Published

11/09/2020

How to Cite

PINTO, G. L. .; GABRIEL FILHO, L. R. A.; BONINI NETO, A.; BAPTISTA, R. D. . The Millennials Culture: behavioral mapping in estimating generations using a mathematical model and artificial intelligence. Research, Society and Development, [S. l.], v. 9, n. 9, p. e887997772, 2020. DOI: 10.33448/rsd-v9i9.7772. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/7772. Acesso em: 25 nov. 2024.

Issue

Section

Human and Social Sciences