Drying kinetics of tomato in conventional dryer and heat pump

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.8024

Keywords:

Low temperature; Lycopersicon esculentum; Water removal rate.

Abstract

Tomatoes are considered highly perishable, requiring from the market the application of post-harvest techniques that promote their conservation and increase shelf life, among them, drying is essential, as it aims to reduce the moisture content to safe levels that allow the stability during storage. Due to the sensitivity of this product, the use of a low temperature heat pump has been studied, in order to reduce degradation and ensure better quality. The objective of the work was to fit mathematical models to describe the drying kinetics of tomato slices using an oven and a heat pump dryer. Three dryings were carried out with tomato slices, with an initial moisture content of approximately 94.70% (wet basis), until they reached 25.00 ± 1% (w.b.). The first and second used a greenhouse with forced circulation and air renewal, at temperatures of 50 and 65 ºC, respectively, while the third was conducted in a dryer with heat pump at a temperature of 45 ºC. To the experimental data of the drying of the tomato slices different mathematical models were adjusted to describe the drying kinetics. The Valcam model fitted the proposed conditions satisfactorily. At the beginning of drying, the rate of water removal was higher for drying in the oven at 60 ºC. The slices of tomato dried with heat pump at 45 ºC showed better aspect in terms of color.

References

Aktas, M., Ceylan, I. & Gürel, A. E. (2014). Testing of a Condensation-type Heat Pump System for Low-temperature Drying Applications. International Journal of Food Engineering, 10(3), 521-531. doi: 10.1515/ijfe-2014-0124

Associação Brasileira das Indústrias de Alimentação (ABIA). (1985). Comissão Nacional da Legislação de Alimentos: Consolidação das Normas e Padrões de Alimentos. Resolução 12/78 (12/7 Frutas Secas ou Dessecadas). São Paulo. v.1/A, p.78.

Berbert, P. A., Queiroz, D. D., Silva, J. S., & Pinheiro Filho, J. B. (1995). Simulation of coffee drying in a fixed bed with periodic airflow reversal. Journal of Agricultural Engineering Research, 60(3), 167-173.

Coşkun, S., Doymaz, İ., Tunçkal, C. & Erdoğan, S. (2016). Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat and Mass Transfer, 53(6), 1863–1871. doi:10.1007/s00231-016-1946-7

Cruz, P. M. F. da., Braga, G. C., & de Grandi, A. M. (2012). Composição química, cor e qualidade sensorial do tomate seco a diferentes temperaturas. Semina: Ciências Agrárias, 33(4), 1475-1486. doi: 10.5433/1679-0359.2012v33n4p1475

Dong, W., Hu, R., Chu, Z., Zhao, J., & Tan, L. (2017). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry, 234(1), 121-130. doi: 10.1016/j.foodchem.2017 .04.156

Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food Chemistry, 272, 723-731. doi: 10.1016/j.foodchem.2018.08.068

Gümüşay, O. A., Borazan, A. A., Ercal, N. & Demirkol, O. (2015) Drying effects on the antioxidante properties of tomatoes and ginger. Food Chemistry, 173(1), 156-162. doi:10.1016/j.foodchem.2014.09.162.

Jeyaprakash, S., Heffernan, J. E., Driscoll, R. H., & Frank, D. C. (2020). Impact of drying technologies on tomato flavor composition and sensory quality. LWT, 120(1), 108888. doi:10.1016/j.lwt.2019.108888

Jordan, R. A., Siqueira, V. C., Cavalcanti-Mata, M. E. R., Hoscher, R. H., Mabasso, G. A., Motomia, A, V., Oliveira, F. C., Martins, E. A. S., Santos, R. C. & Quequeto, W. D. (2020a). Cinética de secagem de café natural e descascado a baixa temperatura e umidade relativa com emprego de uma bomba de calor. Research, Society and Development, 9(8). doi:10.33448/rsd-v9i8.5528.

Jordan, R. A., Siqueira, V. C., Quequeto, W. D., Cavalcanti-Mata, M. E. R. M., Hoscher, R. H., Mabasso, G. A., Battilani, M., Oliveira, F. C. de, Martins, E. A. S. & Freitas, R. L. (2020b). Consumo específico de energia na secagem de café com sistema de aquecimento resistivo e bomba de calor. Research, Society and Development, 9(9), e303997297-e303997297. doi: 10.33448/rsd-v9i9.7297

Juan, W., Chong, Z., Zhentao, Z. & Luwei, Y. (2013). Performance Analysis of Heat-pump Dryer to Dry Mushroom. Advance Journal of Food Science and Technology, 5(2), 164-168. doi:10.19026/ajfst.5.3238

Kashaninejad, M., Mortazavi, A., Safekordi, A. & Tabil, L. G. (2007). Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, 78(1), 98-108. doi: 10.1016/j.jfoodeng.2005.09.007

Liu, Y., Zhaoa, K., Jiu, M. & Zhang, Y. (2017). Design and Drying Technology Research of Heat Pump Lentinula Edodes Drying Room. Procedia Engineering, 205(1), 938-988. doi: 10.1016/j.proeng.2017.10.154

Monteiro, C. S., Balbi, M. E., Miguel, O. G., Penteado, P. T. P. S. & Haracemiv, S. M. C. (2008). Qualidade nutricional e antioxidante do tomate “tipo italiano”. Alimentos e Nutrição, 19(1) 25-31.

Olajire, A. A. & Azeez, L. (2011). Total antioxidant activity, phenolic, flavonoid and ascorbic acid contents of Nigerian vegetables. African Journal of Food Science and Technology, 2(2), 22-29.

Ozdemir, Y., Yavas, H., Ozyurt, U., Kosti, R. I. & Keskinel, O. (2018) Olive semidrying process: oleuropein degradation in relation to sensory bitterness. Journal of Food Science and Nutrition, 1(2), 1-8. doi:10.35841/food-science.1.2.1-8

Pacco, H. C. (2008). Desenvolvimento de um sistema de bomba de calor água/água para resfriamento e secagem de tomates. Tese (Doutorado em Engenharia Agrícola), Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brasil.

Purkayastha, M. D., Nath, A., Deka, B. C., & Mahanta, C. L. (2013). Thin layer drying of tomato slices. Journal of food science and technology, 50(4), 642-653. doi: 10.1007/ s13197-011-0397-x 2011

Resende, O., Arcanjo, R. V., Siqueira, V. C., & Rodrigues, S. (2009). Modelagem matemática para a secagem de clones de café (Coffea canephora Pierre) em terreiro de concreto. Acta Scientiarum. Agronomy, 31(2), 189-196.

Silva, F. P., Siqueira, V. C., Martins, E. A. S., Miranda, F. M. N. & Melo, R. M. (2017). Thermodynamic properties and drying kinetics of Bauhinia forficata Link leaves. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(1), 61-67. doi:10.1590/1807-1929/agriambi.v21n1p61-67

Siqueira, V. C., Resende, O. & Chaves, T. H. (2013). Mathematical modelling of the drying of jatropha fruit: an empirical comparison. Revista Ciência Agronômica, 44(2), 278-285. doi:10.1590/S1806-66902013000200009

Teeboonma, U., Tiansuwan, J. & Soponronnarit, S. (2003). Optimization of heat pump fruit dryers. Journal of Food Engineering, 59(4), 369-377. doi:10.1016/S0260-8774(02)00496-X

Published

08/09/2020

How to Cite

JORDAN, R. A.; QUEQUETO, W. D.; MARTINS, E. A. S. .; SIQUEIRA, V. C.; HOSCHER, R. H. .; SILVA, R. V. da .; MELO, C. D. O. M. de .; FREITAS, R. L.; BATTILANI, M. .; OLIVEIRA, F. C. de . Drying kinetics of tomato in conventional dryer and heat pump. Research, Society and Development, [S. l.], v. 9, n. 9, p. e810998024, 2020. DOI: 10.33448/rsd-v9i9.8024. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8024. Acesso em: 23 nov. 2024.

Issue

Section

Agrarian and Biological Sciences