Influence of infusion time on the physicochemical characteristics and on the content of nutraceutical bioactive compounds in mangaba leaf (Hancornia speciosa Gomes)
DOI:
https://doi.org/10.33448/rsd-v9i10.8557Keywords:
Apocynaceae; Tea; Time; Phytochemicals.Abstract
The leaves of mangabeira are popularly used in the preparation of teas and infusions for medicinal purposes. Herbal infusions have beneficial properties due to the bioactive substances that act as antioxidants. Thus, the objective of this study was to evaluate the physical-chemical characteristics and the content of nutraceutical bioactive compounds and to verify the influence of time on mango leaf infusions. The infusions were prepared in triplicate at 5 and 10 (I5 and I10) minutes, adding 1 g of vegetable material in natura in 50 mL of boiling water. Analyzes were carried out for physical-chemical characterization of fresh leaves, infusions and residues: color and browning index (I.E.); total soluble solids in ºBrix e; pH. The analyzes of the bioactive compounds were: chlorophylls, carotenoids and total phenols. In the physical-chemical analyzes, the content of total soluble solids did not vary significantly, indicating that the analyzed times extracted similar contents. I.E. remained constant, indicating that heat treatment was not associated with enzymatic activation and browning. However, the infusion time significantly affected phytochemicals. The values of total chlorophyll and its fractions varied with a progressive decrease compared to leaf in natura at different infusion times, as well as total carotenoids, β-carotene and phenols, which suggests the influence of time on the amount of these compounds present in infusions, being that, I5 provided less loss of the compounds compared to I10, being able to correlate positively with the concentration of flavonoids and with the antioxidant activity.
References
ABIR. (2019). Associação Brasileira das Indústrias de Refrigerantes e de Bebidas não Alcoólicas - ABIR. Recuperado de https://abir.org.br/
Almeida, M. M. B., de Sousa, P. H. M., Arriaga, Â. M. C., do Prado, G. M., Magalhães, C. E. de C., Maia, G. A., & de Lemos, T. L. G. (2011). Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International, 44(7), 2155–2159. https://doi.org/10.1016/j.foodres.2011.03.051
Azeredo, H. M. C. de. (2004). Fundamentos de estabilidade de alimentos. EMBRAPA, p. 195. Recuperado de http://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=771609 &biblioteca=vazio&busca=autoria:%22PREGNOLATTO, N.P.%22&qFacets=autoria:%2 2PREGNOLATTO, N.P.%22&sort=&paginacao=t&paginaAtual=1
Bastos, D. H. M., Rogero, M. M., & Arêas, J. A. G. (2009). Effects of dietary bioactive compounds on obesity induced inflammation. Arquivos Brasileiros de Endocrinologia e Metabologia, 53(5), 646–656. https://doi.org/10.1590/s0004-27302009000500017
Bastos, K., Dias, C., Nascimento, Y., da Silva, M., Langassner, S., Wessjohann, L., & Tavares, J. (2017). Identification of Phenolic Compounds from Hancornia speciosa (Apocynaceae) Leaves by UHPLC Orbitrap-HRMS. Molecules, 22(1), 143. https://doi.org/10.3390/molecules22010143
Bomfim, M. P., Pace Lima, G. P., Vianelo, F., & São José, A. R. (2017, August). Caracterização dos compostos bioativos em frutas e hortaliças adquiridas no comércio de Padova - Itália. Revista Iberoamericana de Tecnología Postcosecha, 14. Recuperado de https://www.redalyc.org/articulo.oa?id=81353563003
Cardoso, L. D. M., Reis, B. D. L., Oliveira, D. D. S., & Pinheiro-Sant’Ana, H. M. (2014). Mangaba (Hancornia speciosa Gomes) from the Brazilian Cerrado: Nutritional value, carotenoids and antioxidant vitamins. Fruits, 69(2), 89–99. https://doi.org/10.1051/fruits/2013105
Cecchi, H. M. (2003). Fundamentos teóricos e práticos em análise de alimentos. Fundamentos teóricos e práticos em análise de alimentos. Editora da Unicamp. https://doi.org/10.7476/9788526814721
Chen, G. L., Chen, S. G., Zhao, Y. Y., Luo, C. X., Li, J., & Gao, Y. Q. (2014). Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products, 57, 150–157. https://doi.org/10.1016/j.indcrop.2014.03.018
Cvetanović, A., Švarc-Gajić, J., Zeković, Z., Jerković, J., Zengin, G., Gašić, U., … Đurović, S. (2019). The influence of the extraction temperature on polyphenolic profiles and bioactivity of chamomile (Matricaria chamomilla L.) subcritical water extracts. Food Chemistry, 271, 328–337. https://doi.org/10.1016/j.foodchem.2018.07.154
Das, P. R., Kim, Y., Hong, S. J., & Eun, J. B. (2019). Profiling of volatile and non-phenolic metabolites—Amino acids, organic acids, and sugars of green tea extracts obtained by different extraction techniques. Food Chemistry, 296, 69–77. https://doi.org/10.1016/j.foodchem.2019.05.194
de Lima, J. P., Azevedo, L., de Souza, N. J., Nunes, E. E., & Vilas Boas, E. V. de B. (2015). First evaluation of the antimutagenic effect of mangaba fruit in vivo and its phenolic profile identification. Food Research International, 75, 216–224. https://doi.org/10.1016/j.foodres.2015.05.045
Donlao, N., & Ogawa, Y. (2019). The influence of processing conditions on catechin, caffeine and chlorophyll contents of green tea (Camelia sinensis) leaves and infusions. LWT, 116, 108567. https://doi.org/10.1016/j.lwt.2019.108567
Ferreira, E. G., Melo, M. A. R. de, Menino, I. B., Sousa, M. F. de, Régis, T. K. O., & Vasconcelos, G. C. (2018). Caracterização Biométrica De Plantas E Físico-Química De Frutos De Mangabeiras Do Litoral Da Paraíba. Revista Campo do Saber (Vol. 4). Recuperado de http://periodicos.iesp.edu.br/index.php/campodosaber/article/view/143
G. Hrazdina, & Wagner, G. J. (1985). Compartmentation of plant phenolic compounds ; site of synthesis and accumulation. Annu. Proc. Phytochem. Soc. Europe, 25, 120–133. Retrieved from https://ci.nii.ac.jp/naid/10004053055
Geller, F. C., Teixeira, M. R., Pereira, A. B. D., Dourado, L. P. A., Souza, D. G., Braga, F. C., & Simões, C. M. O. (2015). Evaluation of the Wound Healing Properties of Hancornia speciosa Leaves. Phytotherapy Research, 29(12), 1887–1893. https://doi.org/10.1002/ptr.5438
Gennadios, A., Weller, C. L., Hanna, M. A., & Froning, G. W. (1996). Mechanical and barrier properties of egg albumen films. Journal of Food Science, 61(3), 585–589. https://doi.org/10.1111/j.1365-2621.1996.tb13164.x
Goupy, P., Amiot, M. J., Richard-Forget, F., Duprat, F., Aubert, S., & Nicolas, J. (1995). Enzymatic Browning of Model Solutions and Apple Phenolic Extracts by Apple Polyphenoloxidase. Journal of Food Science, 60(3), 497–501. https://doi.org/10.1111/j.1365-2621.1995.tb09811.x
Herrera, T., Aguilera, Y., Rebollo-Hernanz, M., Bravo, E., Benítez, V., Martínez-Sáez, N., … Martín-Cabrejas, M. A. (2018). Teas and herbal infusions as sources of melatonin and other bioactive non-nutrient components. LWT - Food Science and Technology, 89, 65–73. https://doi.org/10.1016/j.lwt.2017.10.031
Ho, C., Rafi, M. M., & Ghai, G. (2010). Substâncias bioativas: nutracêuticas e tóxicas. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Química de alimentos de Fennema (4th ed., p. 900). Porto Alegre: Artmed.
Hodge, J. E. (1953). Dehydrated foods, Chemistry of Browning Reactions in Model Systems. Journal of Agricultural and Food Chemistry, 1(15), 928–943. https://doi.org/10.1021/jf60015a004
Izzo, A. A., Hoon-Kim, S., Radhakrishnan, R., & Williamson, E. M. (2016, May 1). A Critical Approach to Evaluating Clinical Efficacy, Adverse Events and Drug Interactions of Herbal Remedies. Phytotherapy Research. John Wiley and Sons Ltd. https://doi.org/10.1002/ptr.5591
Kwak, E. J., & Lim, S. I. (2004). The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control. Amino Acids, 27(1), 85–90. https://doi.org/10.1007/s00726-004-0067-7
Lee, K. H., Lee, J. S., Kim, E. S., & Lee, H. G. (2019). Preparation, characterization, and food application of rosemary extract-loaded antimicrobial nanoparticle dispersions. LWT, 101, 138–144. https://doi.org/10.1016/j.lwt.2018.10.072
Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: Mechanism of action. In Journal of Nutrition (Vol. 134, pp. 3479–3485). Oxford Academic. https://doi.org/10.1093/jn/134.12.3479s
Magagna, F., Cordero, C., Cagliero, C., Liberto, E., Rubiolo, P., Sgorbini, B., & Bicchi, C. (2017). Black tea volatiles fingerprinting by comprehensive two-dimensional gas chromatography – Mass spectrometry combined with high concentration capacity sample preparation techniques: Toward a fully automated sensomic assessment. Food Chemistry, 225, 276–287. https://doi.org/10.1016/j.foodchem.2017.01.003
Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004, May 1). Polyphenols: Food sources and bioavailability. American Journal of Clinical Nutrition. American Society for Nutrition. https://doi.org/10.1093/ajcn/79.5.727
Palou, E., López-Malo, A., Barbosa-Cánovas, G. V., Welti-Chanes, J., & Swanson, B. G. (1999). Polyphenoloxidase activity and color of blanched and high hydrostatic pressure treated banana puree. Journal of Food Science, 64(1), 42–45. https://doi.org/10.1111/j.1365-2621.1999.tb09857.x
Pereira, A. C., Pereira, A. B. D., Moreira, C. C. L., Botion, L. M., Lemos, V. S., Braga, F. C., & Cortes, S. F. (2015). Hancornia speciosa Gomes (Apocynaceae) as a potential anti-diabetic drug. Journal of Ethnopharmacology, 161, 30–35. https://doi.org/10.1016/j.jep.2014.11.050
Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/L ic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Podadera, P., & Sabato, S. F. (2007). Radiation effect on sucrose content of inverted sugar. In International Nuclear Atlantic Conference - INAC 2007 (p. 4). Santos: Associação Brasileira De Energia Nuclear - ABEN.
Ragazzi, E., & Veronese, G. (1973). Quantitative analysis of phenolic compounds after thin-layer chromatographic separation. Journal of Chromatography A, 77(2), 369–375. https://doi.org/10.1016/S0021-9673(00)92204-0
Rufino, M. do S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037
Santos, U. P. dos, Tolentino, G. S., Morais, J. S., Souza, K. D. P., Estevinho, L. M., & Santos, E. L. dos. (2018). Physicochemical characterization, microbiological quality and safety, and pharmacological potential of Hancornia speciosa gomes. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/2976985
SAPPI. (2013). Defining and Communicating Color: The CIELAB System. Recuperado de https://cdn-s3.sappi.com/s3fs-public/sappietc/Defining and Communicating Color.pdf
Silva-Junior, J. F. Da, Mota, D. M., Ledo, A. Da S., Schmitz, H., Muniz, A. V. C. Da S., & Rodrigues, R. F. de A. (2017). Mangaba: Hancornia speciosa Gomes. - Portal Embrapa. EMBRAPA, 28. Recuperado de https://www.embrapa.br/busca-de-publicacoes/-/publicacao/ 1096247/mangaba-hancornia-speciosa-gomes
Silva, G. C., Braga, F. C., Lemos, V. S., & Cortes, S. F. (2016). Potent antihypertensive effect of Hancornia speciosa leaves extract. Phytomedicine, 23(2), 214–219. https://doi.org/10.1016/j.phymed.2015.12.010
Smith, W., Mitchell, P., & Rochester, C. (1997). Serum beta carotene, alpha tocopherol, and age-related maculopathy: The blue mountains eye study. American Journal of Ophthalmology, 124(6), 838–840. https://doi.org/10.1016/S0002-9394(14)71702-7
Soto, C., Caballero, E., Pérez, E., & Zúñiga, M. E. (2014). Effect of extraction conditions on total phenolic content and antioxidant capacity of pretreated wild Peumus boldus leaves from Chile. Food and Bioproducts Processing, 92(3), 328–333. https://doi.org/10.1016/j.fbp.2013.06.002
Teofilović, B., Grujić-Letić, N., Goločorbin-Kon, S., Stojanović, S., Vastag, G., & Gadžurić, S. (2017). Experimental and chemometric study of antioxidant capacity of basil (Ocimum basilicum) extracts. Industrial Crops and Products, 100, 176–182. https://doi.org/10.1016/j.indcrop.2017.02.039
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Alaíza Barros Lima Morais; Daniela Nascimento Ferreira ; Giannina Soares Taveira ; Heriberto Alves dos Anjos; Alessandra Almeida Castro Pagani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.