Enterococcus faecium EF137V: a new strategic source for the control of human and animal health against Campylobacter species

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8853

Keywords:

Probiotics; Enterococcus faecium; Campylobacter jejuni; Campylobacter coli; Biothecnology.

Abstract

The probiotic is related to a food supplement, while the live biotherapeutic products - LBPs are considered biological medicines, both contain living microorganisms with active substances that benefit the host. Enterococcus faecium has many interesting and functional properties for human and animal health, including the antimicrobial capacity, which helps in food poisoning diseases such as Campylobacteriosis. Campylobacter jejuni and C. coli species have been described in this context. Therefore, due to the need to develop alternatives to ensure the safety of products consumed by the population, this work proposes a complementary strategy to reduce or eliminate Campylobacter through the use of Enterococcus faecium EF137V, isolated from artisanal “Coalho” cheese from Pernambuco-Brazil. The analyzes were performed in vitro. Given the adverse conditions, such as acid pH and the presence of bile salts, in which EF137V was exposed, it was found that the bacteria showed resistance to gastrointestinal conditions, adherence to epithelial cells, antimicrobial activity by its metabolic compounds against reference strains of C. jejuni and C. coli, as well as antagonistic activity, which suggests that both species will not be able to grow disorderly in the host's intestinal microbiota, thus being able to control these microorganisms in the bacterial community in broilers and preventing new infections in humans. It can be concluded that the EF137V is a promising PVB and probiotic, presenting great capacity for biotechnology applications.

References

Abushelaibi, A., Al-Mahadin, S., El-Tarabil, K., Shah, N,P. & Ayuash, M. (2017). Characterization of potential probiotic lactic acid bacteria isolated from camel milk. Food Science and Technology, 79, p.316-325. doi.org/10.1016/j.lwt.2017.01.041

Alwan A., Deignan T., O’Sullivan M., Kelly J. & O’Farrelly, C. (1998). Quantitative assay of Salmonella adherence to intestinal epithelia cells: A new method for assessing novel intervention products. Journal of Microbiological Methods, 33, p.163-170. doi.org/10.1016/s0167-7012(98)00052-9

Argyri, A. A., Zoumpopoulou, G. & Karatzas, K. A. G. (2013). Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiology, 33, p.282-289. doi: 10.1016/j.fm.2012.10.005

Asha & Gayathri, D. (2012). Synergistic impact of Lactobacillus fermentum, Lactobacillus plantarum and vincristine on 1,2-dimethylhydrazine-induced colorectal carcinogenesis in mice. Experimental and Therapeutic Medicine, 3, p.1049-1054. doi.org/10.3892/etm.2012.536

Bratz, K., Gölz, G., Janczyk, P., Nökler, K. & Alter, T. (2015). Analysis of in vitro and in vivo effects of probiotics against Campylobacter spp.. Berliner und Münchener Tierärztliche Wochenschrif, 12, p.155-162. doi.org/ 10.2376/0005-9366-128-155

Bromberg, R., Moreno, I., Delboni, R. R. & Cintra, H. C. (2006). Características da bacteriocina produzida por Lactococcus lactis ssp. hordniae CTC484 e seu efeito sobre Listeria monocytogenes em carne bovina. Ciência e Tecnologia de Alimentos, 26, p.135-144. dx.doi.org/10.1590/S0101-20612006000100023

Calazans, L. T. S., Andrade, M. A., Machado, B. A. S. & Minafra-Rezende, C. S. (2020). Estratégias para redução de Campylobacter termotolerantes em frangos. Research, Society and Development, 9(3), p.1-18. dx.doi.org/10.33448/rsd-v9i3.2440

Carvalho, J. D. G. (2007). Caracterização da microbiota lática isolada de queijo de Coalho artesanal produzido no Ceará e de suas propriedades tecnológicas. 154 f. Tese (Doutorado em Tecnologia de Alimentos) Departamento de Tecnologia de Alimentos, Universidade Estadual de Campinas, Campinas.

Chakchouk-mtibaa, A., Elleuch, S., Smaoui, S., Najah, I., Sellem, S. & Abdelkafi, L. (2014). An antilisterial bacteriocin BacFL31 produced by Enterococcus faecium FL31 with a novel structure containing hydroxyproline residues. Anaerobe, 27, p.1-6. doi.org/10.1016/j.anaerobe.2014.02.002

Chaveerach, P., Keuzenkamp, D. A., Urlings, H. A., Lipman, L. J. & Knapen, F. (2002). In vitro study on the effect of organic acids on Campylobacter jejuni/coli populations in mixtures of water and feed. Poultry Science, 8, p.621-628. doi.org/10.1093/ps/81.5.621

Chen, P., Zhang, Q., Dang, H., Liu, X., Tian, F., Zhao, J., Chen, Y., Zhang, H. & Chen, W. (2014). Screening for potential new probiotic based on probiotic properties anda-glucosidase inhibitory activity. Food Control, 35, p.65-72. doi.org/ 10.1016/j.foodcont.2013.06.027

Christofoli, M., Souza, C. S., Costa, T. F., Alexandrino, S., Faria, P., Minhafra-Rezende, C., Santos, F., Minafra, C. & Pereira, P. S. (2020). Beneficial and harmful intestinal microbiota in poultry farming: Review. Research, Society and Development, 9(7), p.1-26. dx.doi.org/10.33448/rsd-v9i7.3667

CLSI. Clinical a Laboratory Standards Institute. (2003). CLSI document M2-A8. Pennsylvania: West Valley Road.

Cocolin, L., Foschino, R., Comi, G. & Grazia Fortina, M. (2007). Description of the bacteriocins produced by two strains of Enterococcus faecium isolated from Italian goat milk. Food Microbiol, 24, p.752- 758. doi.org/10.1016/j.fm.2007.03.001

Coppola, R., Succi, M., Tremonte, P. & Reale, A. (2005). Antibiotic susceptibility of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. Lait, 85, p.193-204. doi.org/10.1051/lait:2005007

Das, P., Khowala, S. & Biswas, S. (2016). In vitro probiotic characterization of Lactobacillus casei isolated from marine samples. Food Science and Technology, 73, p.383-390. htpps:/doi.org/10.1016/j.lwt.2016.06.029

Favaro, L., Basaglia, M., Casella, S., Hue, I., Dousset, X., Gombossy, D. E., Melo Franco, B. D. & Todorov, S.D. (2014). Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from home made white brine cheese. Food Microbiol, 38, p.228-239. doi.org/ 10.1016/j.fm.2013.09.008

Food and Drug Administration – FDA (2015). Early Clinical Trials With Live Biotherapeutic Products: Chemistry, Manufacturing, and Control Information; Guidance for Industry; Request for Comments Federal Register Notice.

Franz, C. M., Huch, M., Abriouel, H., Holzapfel, W. & Gálvez, A. (2011). Enterococci as probiotics and their implications in food safety. International Journal Food Microbiol, 151, p.125. doi.org/10.1016/j.ijfoodmicro.2011.08.014

García, S. L., Melero, B., Diez, A. M., Jaime, I., Canepa, A. & Rovira, J. (2020). Genotyping, virulence genes and antimicrobial resistance of Campylobacter spp. isolated during two seasonal periods in Spanish poultry farms. Preventive Veterinary Medicine, 176, p.104935. doi.org/10.1016/j.prevetmed.2020.104935

Giraffa, G. (2002). Enterococcus from foods. FEMS Microbiology Reviews, 26, p.163-171. doi.org/10.1111/j.1574-6976.2002.tb00608.x

Goh, H. F. & Philip, K. (2014). Isolation and mode of action of bacteriocin BacC1 produced by nonpathogenic Enterococcus faecium C1. Journal Dairy Science, 98, p.1-1.

Gudiña, E. J., Rocha, V., Teixeira, J. A. & Rodrigues, L. R. (2010). Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. Paracasei A20. Letters in Applied Microbiology, 50, p.419-424. doi.org/10.1111/j.1472-765X.2010.02818.x

Guedes Neto, L. G., Souza, M. R., Nunes, A. C., Nicoli, J. R. & Santos, W. L. M. (2005). Atividade antimicrobiana de bactérias ácido-lácticas isoladas de queijos de coalho artesanal e industrial frente a microorganismos indicadores. Arq. Bras. Med. Vet. Zootec. Supl, 2, p.245-250. dx.doi.org/10.1590/S0102-09352005000800017

International Organization for Standardization – (ISO). (2006). Microbiology of food and animal feeding stuffs – Horizontal method for the detection and enumeration of Campylobacter – Part 1: Detection Method, 1thed. The International Organization for Standardization, (ISO 10272-1:2006). 16 p.

Kos, B., Suskovic, J., Vukovic, S., Simpraga, M., Frece, J. & Matosic, S. (2003). Adhesion and aggregation ability of probiotic strain Lactobacillus acidophillus M92. Journal of Applied Microbiology, 94, p.981-987. doi.org/10.1046/j.1365-2672.2003.01915.x

Krasowska, A. & Sigler, K. (2014). How microorganisms use hydrophobicity and what does this mean for human needs?. Frontiers in Cellular and Infection Microbiology. 4, p.1-7. doi.org/10.3389/fcimb.2014.00112

Kumar, A., Kumar, D. (2015). Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Clinical Microbiology, 33, p.117-123. doi.org/10.1016/j.anaerobe.2015.03.004

Laheinen, T., Malinen, E., Koort, J. M. K., Mertaniemi-Hannus, U., Hankimo, T., Karikoski, N., Pakkanen, S., Laine, H., Sillanpaa, H., Soderholm, H. & Palva, A. (2010). Probiotic properties of Lactobacillus isolates originating from porcine intestine and feces. Anaerobe, 16, p.293-300. doi.org/10.1016/j.anaerobe.2009.08.002

Lima, F. L. O. & Oliveira, G. A. L. (2020). Fatores associados ao impacto de gastroenterites por Campylobacter jejuni. Research, Society and Development, 9(7), p.1-18.

Ma, L., Wang, Y., Shen, J., Zhang, Q. & Wu, C. (2014). Tracking Campylobacter contamination along a broiler chicken production chain from the farm level to retail in China. International Journal Food Microbiology, 181, p.77-84. doi.org/10.1016/j.ijfoodmicro.2014.04.023

Maragkoudakis, P. A., Zoumpopoulou, G., Miaris, C., Kalantzopoulos, G., Pot, B. & Tsakalidou, E. (2006). Probiotic potential of Lactobacillus strains isolated from dairy products. International Dairy Journal, 6, p.189-199. doi.org/10.1016/j.idairyj.2005.02.009

Meunier, M., Guyard-nicodeme, M., Dory D. & Chemaly, M. (2015). Control strategies against Campylobacter at the poultry production level: biosecurity measures, feed additives and vaccination. Journal Appl. Microbiol, 120, 1139-1173. doi.org/10.1111/jam.12986

Monteagudo-Mera, A., Rodríguez-Aparicio, L., Rúa, J., Martínez-Blanco, H., Navasa, N., García-Armesto, MR. & Ferrero, M. A. (2012). In vitro evaluation of physiological probiotic properties of diferente lactic acid bactéria strains of dairy and human origin. Journal of functional foods, 4, p.531-541. doi.org/10.1016/j.jff.2012.02.014

Morrow, L. E., Gogineni, V. & Malesker, M. A. (2012). Probiotics in the intensive care unit. Nutrition Clinical Practice, 27, p.233-241. doi.org/10.1 0971MCC.Ob013e3283252d2d

Naidu, A. S., Bidlack, W. R. & Clemens, R. A. (1999). Probiotic spectra of lactic acid bacteria. Critical Reviews in Food Science and Nutrition, 39, p.13-126. doi.org/10.1080/10408699991279187

NCCLS (2013). Performance standards for antimicrobial disk susceptibility tests. Approved standard (8th ed.), Wayne, PA: NCCLS document M2-A8.

Pajarillo, E. A. B., Chae, J., Balolong, M., Kim, H. B. & Kang, D. (2014). Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. The Journal of General and Applied Microbiology, 60, p.140-146. doi.org/10.2323/jgam.60.140

Palomino, J. C., Martin, A., Camacho, M., Guerra, H., Swings, J. & Portaels, F. (2002). Resazurin Microtiter Assay Plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 46, p.2720-2722. doi.org/10.1128/AAC.46.8.2720-2722.2002

Patel, R. M. & Denning, P. W. (2015). Intestinal microbiota and its relationship with necrotizing enterocolitis. Pediatr Res, 78, p.232-8. doi.org/10.1038/pr.2015.97

Peres, P. A. B. M. (2020). Perfil virulento, disseminação fenotípica e distribuição espacial e sazonal de Campylobacter jejuni isoladas de carcaças de frango no Brasil. (Dissertação de Mestrado) Universidade Federal de Uberlândia, Minhas Gerais. doi.org/10.14393/ufu.di.2020.532

Plessas, S., Nouska, C., Karapetsas, A., Kazakos, S., Alexopoulos, A., Mantzourani, I., Chondrou, P., Fournomiti, M., Galanis, A. & Bezirtzoglou, E. (2017). Isolation, characterization and evaluation of the probiotic potential of a novel Lactobacillus strain isolated from Feta-type cheese. Food Chemistry, 226, p.102-108. doi.org/10.1016/j.foodchem.2017.01.052

Rehaiem, A., Ben, B. Z., Edalatian, M. R., Martinez, B., Rodriguez, A. & Manai, M. (2014). Assessment of potential probiotic properties and multiple bacteriocin encoding-genes of the technological performing strain Enterococcus faecium MMRA. Food Control, 37, p.343-350. doi.org/10.1016/j.foodcont.2013.09.044

Reis, T. L. & Vieites, F. M. (2019). Antibiotic, prebiotic, probiotic and symbiotic in feeds of broiler chickens and laying hens. Ciência Animal, 9(3), p.133-147.

Rosenberg, M., Gutnick, D. & Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons, a simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters, 9, p.29-33. doi.org/10.1111/j.1574-6968.1980.tb05599.x

Rosenberg, M., Kjelleberg, S. (1986). Hydrophobic interactions in bacterial adhesion. Advances in microbial ecology, 9, p.353-393.

Ross, J. J. (2008). Considerations in the development of live biotherapeutic products for clinical use. Curr. Issues Mol. Biol, 10, p.13-16.

Santos, D. S., Calaça, P. R. A., Porto, A. L. F., Souza, P. R. E., Freitas, N. S. A. & Soares, M. T. C. V. (2020). What Differentiates Probiotic from Pathogenic Bacteria? The Genetic Mobility of Enterococcus faecium Offers New Molecular Insights. OMICS: A Journal of Integrative Biology. doi:10.1089/omi.2020.0078

Santos, T. T., Ornellas, R. M., Arcucio, L. B., Oliveira, M. M., Nicoli, J. R., Dias, C. V., Uetanabaro, A. P. T. & Vinderola, G. (2016). Characterization of lactobacilli strains derived from cocoa fermentation in the south of Bahia for the development of probiotic cultures. Food Science and Thecnology, 73, p.259-266. doi.org/10.1016/j.lwt.2016.06.003

Simmons, M. C., Rouanet, A. & Pot, B. (2020). Live biotherapeutic products: the importance of a defined regulatory framework. Experimental & Molecular Medicine, p.1-10. doi.org/10.1038/s12276-020-0437-6

Sonsa-ard, N., Rodtong, S., Chikindas, M. L. & Yongsawatdigul J. (2015). Characterization of bacteriocin produced by Enterococcus faecium CN-25 isolated from traditionally Thai fermented fish roe. Food Control, 54, p.308-316. doi.org/10.1016/j.foodcont.2015.02.010

Thirabunyanon, M. & Hongwittayakorn, P. (2013). Potential Probiotic Lactic Acid Bacteria of Human Origin Induce Antiproliferation of Colon Cancer Cells via Synergic Actions in Adhesion to Cancer Cells and Short-Chain Fatty Acid Bioproduction. Appl. Biochem. Biotechnol, 169, p.511-525. doi.org/10.1007/s12010-012-9995-y

Thirabunyanon, M. & Thongwittaya, N. (2012). Protection activity of a novel probiotic strain of Bacillus subtilis against Salmonella Enteritidis infection. Research in Veterinary Science, 93, p.74-81. doi.org/10.1016/j.rvsc.2011.08.008.

Todorov, S. D. (2007). Bacteriocin production by Lactobacillus pentosuss t712bz isolated from boza. Brazilian Journal of Microbiology, 38, p.166-172. dx.doi.org/10.1590/S1517-83822007000100034

Todorov, SD. (2010). Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chouriço, traditional pork products from Portugal. Meat Science. 84, p.334-343. doi.org/10.1016/j.meatsci.2009.08.053.

Todorov, S. D. & Dicks, L. M. T. (2005). Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme and Microbial Technology, 36, p.318-326. doi.org/10.1016/j.enzmictec.2004.09.009

Torres, A. C. D., Haas, D. J. & Siqueira, N. D. A. (2016). Principais zoonoses bacterianas de aves domésticas e silvestres. Veterinária em foco, 14(1), p.47-59.

Vahjen, W. & Männer, K. (2003). The effect of a probiotic Enteroccocus faecium product in diets of healthy dogs on bacteriological counts of Salmonella spp., Campylobacter spp. and Clostridium spp. In faeces. Arch. Anim. Nutr, 57, p.229-233. doi.org/10.1080/0003942031000136657

Published

06/10/2020

How to Cite

CALAÇA, P. R. de A.; SILVA, E. C. da; MELO, F. P. de; SANTOS, D. da S.; ARAGÃO, A. B. L.; SILVA, P. E. da C. e; BARROS, M. R.; PORTO, A. L. F.; SOARES, M. T. C. V. Enterococcus faecium EF137V: a new strategic source for the control of human and animal health against Campylobacter species. Research, Society and Development, [S. l.], v. 9, n. 10, p. e5299108853, 2020. DOI: 10.33448/rsd-v9i10.8853. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/8853. Acesso em: 4 jan. 2025.

Issue

Section

Agrarian and Biological Sciences