Nutrient concentrations in trifoliate orange as affected by lime and gypsum

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.9096

Keywords:

Citrus sp.; Acid soil; Soil fertility; Plant nutrition; Citriculture.

Abstract

Use of trifoliate orange [Poncirus trifoliata (L.) Raf.] as a rootstock has intensified in recent years in Brazil. Objectives of this study were to evaluate the effects of lime and agricultural gypsum on concentration of nutrients in trifoliate orange. Seedlings of trifoliate orange were grown in PVC pipe columns, presenting 15 cm in diameter and 35 cm in length. The columns were sectioned in two rings: the upper ring, 15 cm high, and the lower ring, 20 cm high. The factorial scheme (2×4)+1 was used, being two liming treatments and four agricultural gypsum doses (carried out only in the soil of the upper ring), and an additional treatment (with liming carried out in the soil of both upper and lower ring). Liming increased Mg and S concentrations in roots of the superficial soil layer (0-15 cm). Ca concentration was higher in roots of both superficial (0-15 cm) and subsuperficial (15-35 cm) layers. Gypsum without liming resulted in higher N, K, and Mn concentrations and lower Mg concentration in roots of the soil subsurface layer. Ca and S concentrations in root of the soil superficial layer were higher with gypsum. In plant shoot, the concentrations of K, Ca, S and Cu were higher with liming, and concentrations of Ca and P were higher and lower, respectively, with gypsum application.

Author Biography

Fabrício William Ávila, State University of Mid-West

Agronomist with a MSc in Soil Science at Federal University of Lavras (Lavras, Minas Gerais, Brazil). PhD in Soil Science (Soil Fertility and Plant Nutrition) at Federal University of Lavras (2013) and Robert W. Holley Center for Agriculture and Health - USDA/Cornell University (Ithaca, NY, USA). Currently, he is an active member of the Brazilian Soil Science Society and Professor at State University of Mid West (UNICENTRO, Irati, Paraná, Brazil). His scientific production is mainly focused in the field of Soil Fertility and Plant Nutrition.

References

Anderson, D. L., Tuovinen, O. H., Faber, A., & Ostrokowski, I. (1995). Use of soil amendments to reduce soluble phosphorus in dairy soils. Ecological Engineering, 5, 229–246. DOI: https://doi.org/10.1016/0925-8574(95)00025-9

Backes, C. C., Santos, A. M., de Bessa, S. V., Ribon, A. A., Teodoro, A. G., Rodrigues, L. M., Tomazelo, D. A., Leite, L. L. F. (2018). Taxa de cobertura verde e exportação de macronutrientes pelo capim Marandu em função da aplicação de gesso. Archivos de Zootecnia, 67, 234–242. DOI: https://doi.org/10.21071/az.v67i258.3659

Bastos, D. C., Ferreira, E. A., Passos, O. S., Sá, J, F. de, Ataíde, E. M., & Calgaro, M. (2014). Cultivares copa e porta-enxertos para a citricultura brasileira. Informe Agropecuário, 35(281), 36–45. Available: https://www.alice.cnptia.embrapa.br/handle/doc/1007492

Boruvka, L., & Rechcigl, J. E. (2003). Phosphorus retention by the Ap horizon of a Spodosol as influenced by calcium amendments. Soil Science, 168, 699–706. DOI: https://doi.org/10.1097/01.ss.0000095143.68539.55

Caires, E. F., Blum, J., Barth, G., Garbuio, F. J., & Kusman, M. T. (2003). Alterações químicas do solo e resposta da soja ao calcário e gesso aplicados na implantação do sistema plantio direto. Revista Brasileira de Ciência do Solo, 27, 275–286. DOI: https://doi.org/10.1590/S0100-06832003000200008

Caires, E. F., Joris, H. A. W., & Churka, S. (2011). Long‐term effects of lime and gypsum additions on no‐till corn and soybean yield and soil chemical properties in southern Brazil. Soil Use and Management, 27(1), 45–53. DOI: https://doi.org/10.1111/j.1475-2743.2010.00310.x

Callahan, M. P., Kleinman, P. J., Sharpley, A. N., & Stout, W. L. (2002). Assessing the efficacy of alternative phosphorus sorbing soil amendments. Soil Science, 167, 539–547. Available: https://journals.lww.com/soilsci/Abstract/2002/08000/ASSESSING_THE_EFFICACY_OF_ALTERNATIVE_PHOSPHORUS.5.aspx

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (2009). Manual de análises químicas de solos, plantas e fertilizantes. Brasília: Embrapa informação tecnológica.

FAO (2017). Citrus fruit fresh and processed statistical bulletin. Food and Agriculture Organization of the United Nations, Rome.

Fochesato, M. L., Souza, P. V. D. D., Schäfer, G., & Maciel, H. S. (2006). Produção de mudas cítricas em diferentes porta-enxertos e substratos comerciais. Ciência Rural, 36(5), 1397–1403. DOI: https://doi.org/10.1590/S0103-84782006000500008

Habte, M., & Soedarjo, M. (1995). Limitation of vesicular-arbuscular mycorrhizal activity in Leucaena leucocephala by Ca insufficiency in an acid Mn-rich Oxisol. Mycorrhiza, 5(6), 387–394. Available: https://link.springer.com/content/pdf/10.1007/BF00213437.pdf

Kumar, R., Chatterjee, D., Kumawat, N., Pandey, A., Roy, A., & Kumar, M. (2014). Productivity, quality and soil health as influenced by lime in ricebean cultivars in foothills of northeastern India. The Crop Journal, 2(5), 338–344. DOI: https://doi.org/10.1016/j.cj.2014.06.001

Malavolta, E., Vitti, G.C.; & Oliveira, S. A. (1997). Avaliação do estado nutricional das plantas: Princípios e aplicações. 3 ed. Piracicaba: Potafos.

Marschner, H. (2012). Mineral nutrition of higher plants. 3 ed. London: Academic Press.

Mattos Junior, D., Cantarella, H., Quaggio, J. A., & Boaretto, R. M. (2009). Citros: manejo da fertilidade do solo para alta produtividade. Piracicaba: International Plant Nutrition Institute (IPNI), Informações Agronômicas n. 128. Available: http://www.ipni.net/publication/ia-brasil.nsf/0/0431445A9BC1C48F83257A900012439B/$FILE/Page5-12-128.pdf

Michalovicz, L., Müller, M. M. L., Tormena, C. A., Dick, W. A., Vicensi, M., & Meert, L. (2019). Soil chemical attributes, nutrient uptake and yield of no-till crops as affected by phosphogypsum doses and parceling in southern Brazil. Archives of Agronomy and Soil Science, 65(3), 385–399. DOI: https://doi.org/10.1080/03650340.2018.1505041

Minato, E. A., Esper Neto, M., Sakurada, R. L., Inoue, T. T., & Batista, M. A. (2017). Foliar macronutrient contents and maize (Zea mays L.) production in response to gypsum application in an Oxisol. Scientia Agraria Paranaensis, 16(2), 219–224. Available: http://saber.unioeste.br/index.php/scientiaagraria/article/view/14208

Moraes, V. R., Brito, O. R., Fioretto, R. A., & Moreira, A. (2016). Changes in chemical properties of an Oxisol due to gypsum application. Communications in Soil Science and Plant Analysis, 47(5), 571–580. DOI: https://doi.org/10.1080/00103624.2016.1141929

Ndakidemi, P. A., Bambara, S., & Makoi, J. H. (2011). Micronutrient uptake in common bean ('Phaseolus vulgaris' L.) as affected by Rhizobium inoculation, and the supply of molybdenum and lime. Plant Omics, 4(1), 40–52. Available: https://search.informit.com.au/documentSummary;dn=729351375108082;res=IELHSS

Nesom, G. L. (2014). Citrus trifoliata (Rutaceae): Review of biology and distribution in the USA. Phitoneurum, 46, 1–14.

Novais, R. F., & Smyth, T. J. (1999). Fósforo em solo e planta em condições tropicais. Viçosa: Universidade Federal de Viçosa (UFV).

Passos, O. S., Peixouto, L. S., Santos, L. C. D., Caldas, R. C., & Soares Filho, W. D. S. (2006). Caracterização de híbridos de Poncirus trifoliata e de outros porta-enxertos de citros no estado da Bahia. Revista Brasileira de Fruticultura, 28(3), 410–413. DOI: https://doi.org/10.1590/S0100-29452006000300016

Pavan, M. A., Bloch, M. D. F., Zempulski, H. D. C., Miyazawa, M., & Zocoler, D. C. (1992). Manual de análise química de solo e controle de qualidade. Londrina: Instituto Agronômico do Paraná (IAPAR), Circular 76.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica (1º ed, Vol. 1). Santa Maria, RS: UFSM, NTE. Available: http://repositorio.ufsm.br/handle/1/15824

Picchioni, G. A., Graham, C. J., & Ulery, A. L. (2004). Gypsum effects on growth and macroelement uptake of field-grown Asimina triloba (pawpaw) irrigated with low-saline, sodic water. Hortscience, 39(5), 1104–1109. DOI: https://doi.org/10.21273/HORTSCI.39.5.1104

R Development Core Team (2016). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available: URL https://www.r-project.org/

Raij, B. van. (2011). Fertilidade do solo e manejo de nutrientes. Piracicaba: International Plant Nutrition Institute (IPNI).

Rampim, L., Lana, M. D. C., Frandoloso, J. F., & Fontaniva, S. (2011). Atributos químicos de solo e resposta do trigo e da soja ao gesso em sistema de semeadura direta. Revista Brasileira de Ciência do Solo, 35, 1687–1698. DOI: https://doi.org/10.1590/S0100-06832011000500023

Ritchey, K. D.; & Sousa, D. M. G. (1997). Use of gypsum in management of subsoil acidity in Oxisols. In Moniz, A. C., Furlani, A. M. C., Schaffert, R. E., Fageria, N. K., Rosolem, C. A., & Cantarella, H. (Ed.). Plant-soil interactions at low pH: sustainable agriculture and forestry production (pp. 165–178). Campinas: Brazilian Soil Science Society.

Santos, R. L. D., Azevedo, V. M. D., Freire, F. J., Rocha, A. T. D., Tavares, J. A., & Freire, M. B. G. D. S. (2012). Nutrient uptake and use efficiency of elephant grass in the presence of crude gypsum. Revista Brasileira de Ciência do Solo, 36(2), 497–505. DOI: https://doi.org/10.1590/S0100-06832012000200019

Silva, J. T. A. D., Silva, I. P. D., & Simão, F. R. (2016). Produção e nutrição de limoeiro 'Tahiti' em função da adubação com nitrogênio e potássio em cinco safras. Pesquisa Agropecuária Brasileira, 51(4), 357–363. DOI: https://doi.org/10.1590/S0100-204X2016000400008

Silva, N., Van Raij, B., Carvalho, L. H. de, Bataglia, O. C., & Kondo, J. I. (1997). Efeitos do calcário e do gesso nas características químicas do solo e na cultura do algodão. Bragantia, 56(2), 389–401. DOI: https://doi.org/10.1590/S0006-87051997000200018

Sousa, D. M. G., Miranda, L. N., & Oliveira, S. A. (2007). Acidez do solo e sua correção. In: Novais, R. F. et al. (Eds.). Fertilidade do solo (pp. 205–274). Viçosa, MG: Sociedade Brasileira de Ciência do Solo.

Sousa, D.M.G., Lobato, E., & Rein, T.A. (2005). Uso de gesso agrícola nos solos do Cerrado. Planaltina, DF: Embrapa Cerrados.

Stout, W. L., Sharpley, A. N., & Weaver, S. R. (2003). Effect of amending high phosphorus soils with flue-gas desulfurization gypsum on plant uptake and soil fractions of phosphorus. Nutrient Cycling in Agroecosystems, 67, 21–29. DOI: https://doi.org/10.1023/A:1025163319889

Tofanelli, M. B. D., Santos, R. T. dos, & Kogeratski, J. F. (2018). Complexo hidrossolúvel na formação de mudas do porta-enxerto limoerio “Cravo”. Revista de Ciências Agroveterinárias, 17(4), 564–570. DOI: https://doi.org/10.5965/223811711732018564

Troeh, F. R., & Thompson, L. M. (2005). Soils and Soil Fertility. New York, USA: Blackwell.

Vicensi, M., Lopes, C., Koszalka, V., Umburanas, R. C., Vidigal, J. C. B., de Ávila, F. W., & Müller, M. M. L. (2020) Soil fertility, root and aboveground growth of black oat under gypsum and urea rates in no till. Journal of Soil Science and Plant Nutrition, Published online 20 March 2020. DOI: https://doi.org/10.1007/s42729-020-00211-3

Vicensi, M., Müller, M. M. L., Kawakami, J., Nascimento, R. D., Michalovicz, L., & Lopes, C. (2016). Do rates and splitting of phosphogypsum applications influence the soil and annual crops in a no-tillage system? Revista Brasileira de Ciência do Solo, 40, 1–17. DOI: https://doi.org/10.1590/18069657rbcs20150155

Walker, T. W. (1961). Fertility requirements of pastures and their diagnosis. Proceedings of the New Zealand Grassland Association. 23, 85–91.

Downloads

Published

17/10/2020

How to Cite

KORZUNE, M.; ÁVILA, F. W.; BOTELHO, R. V.; PETRANSKI, P. H. .; MATOS, K. K. B. L. de; RAMPIM, L.; MULLER, M. M. L. Nutrient concentrations in trifoliate orange as affected by lime and gypsum . Research, Society and Development, [S. l.], v. 9, n. 10, p. e7449109096, 2020. DOI: 10.33448/rsd-v9i10.9096. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/9096. Acesso em: 21 dec. 2024.

Issue

Section

Agrarian and Biological Sciences