Remote organs respond differently to curcumin treatment after intestinal ischemia/reperfusion injury
DOI:
https://doi.org/10.33448/rsd-v9i11.9660Keywords:
Oxidative stress; Inflammation; Superior Mesenteric Artery.Abstract
We aimed investigate the effects of 45 min of ischemia followed by 72 h of intestinal reperfusion (IR) in the ileum, liver, lungs, and kidneys in Wistar rats and the responses of these organs to curcumin treatment. Ischemia was induced by occluding the superior mesenteric artery. Rats were treated orally with 40 mg/kg curcumin. We analyzed oxidative stress and inflammation in the ileum, liver, lungs, and kidneys. Intestinal IR led to a reduction of reduced glutathione levels in the intestine, lungs, and kidneys and increased lipid hydroperoxide levels in all organs. An increase in the enzymatic activity of catalase was observed in all organs, and an increase in superoxide dismutase activity was observed in the ileum and lungs. Glutathione s-transferase levels increased only in the kidneys. Myeloperoxidase increased in all four organs, and n-acetyl-glycosaminidase increased only in the ileum and lungs. Curcumin prevented all of the changes in the ileum and liver. In the lungs, curcumin had no effect on n-acetyl-glycosaminidase. Curcumin did not prevent the changes in reduced glutathione, lipid hydroperoxides, or myeloperoxidase in the kidneys. Intestinal IR caused oxidative stress and inflammation in the ileum, lungs, and kidneys and to a lesser degree in the liver. Because of its systemic distribution, curcumin prevented changes mainly in the ileum, lungs, and liver and to a lesser degree in the kidneys.
References
Acosta, S., & Björck, M. (2003). Acute thrombo-embolic occlusion of the superior mesenteric artery: a prospective study in a well defined population. Eur J Vasc Endovasc Surg, 26(2), 179–183. https://www.ncbi.nlm.nih.gov/pubmed/12917835
Aebi, H. (1984). Catalase in vitro. Methods Enzymol, 105, 121–126. https://www.ncbi.nlm.nih.gov/pubmed/6727660
Akinrinmade, J. F., Akinrinde, S. A., Odejobi, A., & Oyagbemi, A. A. (2015). Evidence of attenuation of intestinal ischemia-reperfusion injury following pre-treatment with methanolic extracts from Chromolena odorata in rats. J Complement Integr Med, 12(1), 23–32. https://doi.org/10.1515/jcim-2014-0034
Aldemir, D., Tufan, H., Tecder-Unal, M., Türkoğlu, S., Oğüs, E., Kayhan, Z., & Haberal, M. (2003). Age-related alterations of oxidative stress and arginase activity as a response to intestinal ischemia-reperfusion in rat kidney and liver. Transplant Proc, 35(7), 2811–2815. https://www.ncbi.nlm.nih.gov/pubmed/14612127
Aratani, Y. (2018). Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys, 640, 47–52. https://doi.org/10.1016/j.abb.2018.01.004
Barut, F., Ozacmak, V. H., Turan, I., Sayan-Ozacmak, H., & Aktunc, E. (2016). Reduction of Acute Lung Injury by Administration of Spironolactone After Intestinal Ischemia and Reperfusion in Rats. Clin Invest Med, 39(1), E15-24. https://www.ncbi.nlm.nih.gov/pubmed/26833169
Borges, S. C., Ferreira, P. E. B., da Silva, L. M., de Paula Werner, M. F., Irache, J. M., Cavalcanti, O. A., & Buttow, N. C. (2018). Evaluation of the treatment with resveratrol-loaded nanoparticles in intestinal injury model caused by ischemia and reperfusion. Toxicology, 396–397. https://doi.org/10.1016/j.tox.2018.02.002
Börjesson, A., Wang, X., Sun, Z., Wallén, R., Deng, X., Johansson, E., & Andersson, R. (2000). Effects of N-acetylcysteine on pulmonary macrophage activity after intestinal ischemia and reperfusion in rats / with invited commentaries. Dig Surg, 17(4), 379. https://doi.org/10.1159/000018882
Chen, G. Y., & Nuñez, G. (2010). Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol, 10(12), 826–837. https://doi.org/10.1038/nri2873
Chung, H. Y., Baek, B. S., Song, S. H., Kim, M. S., Huh, J. I., Shim, K. H., Kim, K. W., & Lee, K. H. (1997). Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha), 20(3), 127–140. https://doi.org/10.1007/s11357-997-0012-2
Cuzzocrea, S., Chatterjee, P. K., Mazzon, E., Dugo, L., De Sarro, A., de Loo, F. A., Caputi, A. P., & Thiemermann, C. (2002). Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock, 18(2), 169–176. https://www.ncbi.nlm.nih.gov/pubmed/12166782
Demir, M., Amanvermez, R., Kamalı Polat, A., Karabıçak, I., Cınar, H., Kesicioğlu, T., & Polat, C. (2014). The effect of silymarin on mesenteric ischemia-reperfusion injury. Med Princ Pract, 23(2), 140–144. https://doi.org/10.1159/000356860
Faith, M., Sukumaran, A., Pulimood, A. B., & Jacob, M. (2008). How reliable an indicator of inflammation is myeloperoxidase activity? Clin Chim Acta, 396(1–2), 23–25. https://doi.org/10.1016/j.cca.2008.06.016
Fan, Z., Jing, H., Yao, J., Li, Y., Hu, X., Shao, H., Shen, G., Pan, J., Luo, F., & Tian, X. (2014). The protective effects of curcumin on experimental acute liver lesion induced by intestinal ischemia-reperfusion through inhibiting the pathway of NF-κB in a rat model. Oxid Med Cell Longev, 2014, 191624. https://doi.org/10.1155/2014/191624
Fayez, A. M., Awad, A. S., El-Naa, M. M., Kenawy, S. A., & El-Sayed, M. E. (2014). Beneficial effects of thymoquinone and omega-3 on intestinal ischemia/reperfusion-induced renal dysfunction in rats. Bulletin of Faculty of Pharmacy, Cairo University, 52(2), 171–177. https://doi.org/10.1016/J.BFOPCU.2014.05.003
Grootjans, J., Lenaerts, K., Derikx, J. P., Matthijsen, R. A., de Bruïne, A. P., van Bijnen, A. A., van Dam, R. M., Dejong, C. H., & Buurman, W. A. (2010). Human intestinal ischemia-reperfusion-induced inflammation characterized: experiences from a new translational model. Am J Pathol, 176(5), 2283–2291. https://doi.org/10.2353/ajpath.2010.091069
Guzel, A., Kanter, M., Yucel, A. F., & Erboga, M. (2013). Protective effect of curcumin on acute lung injury induced by intestinal ischaemia/reperfusion. Toxicol Ind Health, 29(7), 633–642. https://doi.org/10.1177/0748233711430984
Hakgüder, G., Akgür, F. M., Ateş, O., Olguner, M., Aktuğ, T., & Ozer, E. (2002). Short-term intestinal ischemia-reperfusion alters intestinal motility that can be preserved by xanthine oxidase inhibition. Dig Dis Sci, 47(6), 1279–1283. https://www.ncbi.nlm.nih.gov/pubmed/12064802
Horie, Y., Wolf, R., Miyasaka, M., Anderson, D. C., & Granger, D. N. (1996). Leukocyte adhesion and hepatic microvascular responses to intestinal ischemia/reperfusion in rats. Gastroenterology, 111(3), 666–673. https://www.ncbi.nlm.nih.gov/pubmed/8780571
Iadecola, C., & Anrather, J. (2011). The immunology of stroke: from mechanisms to translation. Nat Med, 17(7), 796–808. https://doi.org/10.1038/nm.2399
Jankun, J., Wyganowska-Świątkowska, M., Dettlaff, K., Jelińska, A., Surdacka, A., Wątróbska-Świetlikowska, D., & Skrzypczak-Jankun, E. (2016). Determining whether curcumin degradation/condensation is actually bioactivation (Review). Int J Mol Med, 37(5), 1151–1158. https://doi.org/10.3892/ijmm.2016.2524
Jiang, Z. Y., Woollard, A. C., & Wolff, S. P. (1991). Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids, 26(10), 853–856. https://www.ncbi.nlm.nih.gov/pubmed/1795606
Jones, D. P. (2002). Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol, 348, 93–112. https://www.ncbi.nlm.nih.gov/pubmed/11885298
Kiliç, K., Hanci, V., Selek, S., Sözmen, M., Kiliç, N., Citil, M., Yurtlu, D. A., & Yurtlu, B. S. (2012). The effects of dexmedetomidine on mesenteric arterial occlusion-associated gut ischemia and reperfusion-induced gut and kidney injury in rabbits. J Surg Res, 178(1), 223–232. https://doi.org/10.1016/j.jss.2012.03.073
Lamaita, R. M., Pontes, A., Belo, A. V, Caetano, J. P., Andrade, S. P., Cândido, E. B., Carneiro, M. M., & Silva-Filho, A. L. (2012). Evaluation of N-acetilglucosaminidase and myeloperoxidase activity in patients with endometriosis-related infertility undergoing intracytoplasmic sperm injection. J Obstet Gynaecol Res, 38(5), 810–816. https://doi.org/10.1111/j.1447-0756.2011.01805.x
Lee, M. C., Velayutham, M., Komatsu, T., Hille, R., & Zweier, J. L. (2014). Measurement and characterization of superoxide generation from xanthine dehydrogenase: a redox-regulated pathway of radical generation in ischemic tissues. Biochemistry, 53(41), 6615–6623. https://doi.org/10.1021/bi500582r
Lin, J. K. (2007). Molecular targets of curcumin. Adv Exp Med Biol, 595, 227–243. https://doi.org/10.1007/978-0-387-46401-5_10
Lindeström, L. M., & Ekblad, E. (2004). Structural and neuronal changes in rat ileum after ischemia with reperfusion. Dig Dis Sci, 49(7–8), 1212–1222. http://www.ncbi.nlm.nih.gov/pubmed/15387349
Mallick, I. H., Yang, W., Winslet, M. C., & Seifalian, A. M. (2004). Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci, 49(9), 1359–1377. http://www.ncbi.nlm.nih.gov/pubmed/15481305
Marczylo, T. H., Steward, W. P., & Gescher, A. J. (2009). Rapid analysis of curcumin and curcumin metabolites in rat biomatrices using a novel ultraperformance liquid chromatography (UPLC) method. J Agric Food Chem, 57(3), 797–803. https://doi.org/10.1021/jf803038f
Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem, 47(3), 469–474. https://www.ncbi.nlm.nih.gov/pubmed/4215654
McCord, J. M. (1985). Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med, 312(3), 159–163. https://doi.org/10.1056/NEJM198501173120305
Montalto, M. C., Hart, M. L., Jordan, J. E., Wada, K., & Stahl, G. L. (2003). Role for complement in mediating intestinal nitric oxide synthase-2 and superoxide dismutase expression. Am J Physiol Gastrointest Liver Physiol, 285(1), G197-206. https://doi.org/10.1152/ajpgi.00029.2003
Nordberg, J., & Arnér, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 31(11), 1287–1312. https://www.ncbi.nlm.nih.gov/pubmed/11728801
Onder, A., Kapan, M., Gümüş, M., Yüksel, H., Böyük, A., Alp, H., Başarili, M. K., & Firat, U. (2012). The protective effects of curcumin on intestine and remote organs against mesenteric ischemia/reperfusion injury. Turk J Gastroenterol, 23(2), 141–147. https://www.ncbi.nlm.nih.gov/pubmed/22706742
Parks, D. A., & Granger, D. N. (1988). Ischemia-reperfusion injury: a radical view. Hepatology, 8(3), 680–682. https://www.ncbi.nlm.nih.gov/pubmed/3286463
Paterno, F., & Longo, W. E. (2008). The etiology and pathogenesis of vascular disorders of the intestine. Radiol Clin North Am, 46(5), 877–885, v. https://doi.org/10.1016/j.rcl.2008.06.005
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Método Qualitativo, Quantitativo ou Quali-Quanti. In Metodologia da Pesquisa Científica. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 28 março 2020.
Saidi, S. A., Ncir, M., Chaaben, R., Jamoussi, K., van Pelt, J., & Elfeki, A. (2017). Liver injury following small intestinal ischemia reperfusion in rats is attenuated by Pistacia lentiscus oil: antioxidant and anti-inflammatory effects. Arch Physiol Biochem, 123(4), 199–205. https://doi.org/10.1080/13813455.2017.1302961
Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., & Srinivas, P. S. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med, 64(4), 353–356. https://doi.org/10.1055/s-2006-957450
Stallion, A., Kou, T. D., Miller, K. A., Dahms, B. B., Dudgeon, D. L., & Levine, A. D. (2002). IL-10 is not protective in intestinal ischemia reperfusion injury. J Surg Res, 105(2), 145–152. https://www.ncbi.nlm.nih.gov/pubmed/12121701
Stoney, R. J., & Cunningham, C. G. (1993). Acute mesenteric ischemia. Surgery, 114(3), 489–490. http://www.ncbi.nlm.nih.gov/pubmed/8367801
Thomas, C. E., Morehouse, L. A., & Aust, S. D. (1985). Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem, 260(6), 3275–3280. https://www.ncbi.nlm.nih.gov/pubmed/2982854
Tiwari, V., Kuhad, A., & Chopra, K. (2011). Emblica officinalis corrects functional, biochemical and molecular deficits in experimental diabetic neuropathy by targeting the oxido-nitrosative stress mediated inflammatory cascade. Phytother Res, 25(10), 1527–1536. https://doi.org/10.1002/ptr.3440
Turan, I., Ozacmak, H. S., Ozacmak, V. H., Barut, F., & Araslı, M. (2017). Agmatine attenuates intestinal ischemia and reperfusion injury by reducing oxidative stress and inflammatory reaction in rats. Life Sci, 189, 23–28. https://doi.org/10.1016/j.lfs.2017.08.032
Ukil, A., Maity, S., Karmakar, S., Datta, N., Vedasiromoni, J. R., & Das, P. K. (2003). Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br J Pharmacol, 139(2), 209–218. https://doi.org/10.1038/sj.bjp.0705241
Vinardi, S., Pierro, A., Parkinson, E. J., Vejchapipat, P., Stefanutti, G., Spitz, L., & Eaton, S. (2003). Hypothermia throughout intestinal ischaemia-reperfusion injury attenuates lung neutrophil infiltration. J Pediatr Surg, 38(1), 88–91. https://doi.org/10.1053/jpsu.2003.50017
Wang, J., Yu, X., Zhang, L., Wang, L., Peng, Z., & Chen, Y. (2018). The pharmacokinetics and tissue distribution of curcumin and its metabolites in mice. Biomed Chromatogr, e4267. https://doi.org/10.1002/bmc.4267
Warholm, M., Guthenberg, C., von Bahr, C., & Mannervik, B. (1985). Glutathione transferases from human liver. Methods Enzymol, 113, 499–504. https://www.ncbi.nlm.nih.gov/pubmed/3003505
Xu, Y., Hu, N., Jiang, W., Yuan, H. F., & Zheng, D. H. (2016). Curcumin-carrying nanoparticles prevent ischemia-reperfusion injury in human renal cells. Oncotarget, 7(52), 87390–87401. https://doi.org/10.18632/oncotarget.13626
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Elouisa Bringhentti; Stephanie Carvalho Borges; Camila Quaglio Neves; Nilza Cristina Buttow
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.