Effect of lactase, transglutaminase and temperature on ice cream crystal by a response surface methodology approach

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10138

Keywords:

Central composite rotatable design; Crystal size; Enzymes; Microscopy; Strawberry ice cream.

Abstract

This study aimed to evaluate the ice cream crystal content considering the addition of enzymes lactase (0.3% to 0.9%) and transglutaminase (0.6% to 7.4%), employing different incubation temperatures (13 to 47 °C) through a 23 central composite rotatable design (DCCR). The crystals content was estimated by ice cream scattering in blades and the crystals images were obtained with a bright field optical microscope for counting and determining the crystals size using Image J software. All ice cream treatments prepared at 40 oC (T2, T6, and T8) and TA2 treatment (T2 treatment similar formulation) showed small content of crystals if compared with the temperatures of 20 and 30 ºC; it was probably associated with a large presence of air bubbles, fat globules and probably some casein micelles, making them ideal for small crystals agglomeration that form a firmer, smooth and cohesive texture.  Moreover, the combined use of lactase and transglutaminase enzymes in the ice cream is viable, efficient and an easy technology for ice cream production. Furthermore, the use of response surface methodology was effective in selecting the best formulation in relation to desirability features ensuring its use in the ice cream development.

Author Biographies

Celeide Pereira, Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná, Câmpus Medianeira

Carla Adriana Pizarro Schmidt, Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná, Câmpus Medianeira

Solange Teresinha Carpes, Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná, Câmpus Pato Branco

Fabiana Ourique, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Chirle Ferreira, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Valdelucia Maria Alves de Souza Grinevicius, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

André Wüst Zibetti, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Pedro Luiz Manique Barreto, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Rozangela Curi Pedrosa, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Ernani Sebastião Sant’Anna, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

References

Adhikari, B. M., Truong, T., Prakash, S., Bansal, N., & Bhandari, B. (2020). Impact of incorporation of CO2 on the melting, texture and sensory attributes of soft-serve ice cream. International Dairy Journal, 104789. https://doi.org/10.1016/j.idairyj.2020.104789

Al, M., Ersoz, F., Ozaktas, T., Turkanoglu-Ozçelik, A., & Kuçukçetin, A. (2020). Comparison of the effects of adding microbial transglutaminase to milk and ice cream mixture on the properties of ice cream. International Journal of Dairy Technology, 0, 1–7. https://doi.org/10.1111/1471-0307.12707

Aloglu, H. S., Ozcan, Y., Karasu, S., Cetin, B., & Sagdic, O. (2018). Influence of transglutaminase treatment on the physicochemical , rheological , and melting properties of ice cream prepared from goat milk. Mljekarstvo, 68(2), 126–138. https://doi.org/10.15567/mljekarstvo.2018.0206

Cavender, G. A., & Kerr, W. L. (2020). Microfluidization of full-fat ice cream mixes : Effects on rheology and microstructure. Journal of Food Process Engineering, 43(e13350), 1–12. https://doi.org/10.1111/jfpe.13350

Chang, Y., & Hartel, R. W. (2002). Development of air cells in a batch ice cream freezer. Journal of Food Engineering, 55, 71–78.

Costa, F F, Resende, J. V, Abreu, L. R., & Goff, H. D. (2008). Effect of Calcium Chloride Addition on Ice Cream Structure and Quality. Journal of Dairy Science, 91(6), 2165–2174. https://doi.org/10.3168/jds.2007-0932

Costa, Fabiano Freire, Resende, J. V., & Abreu, L. R. (2012). Estabilidade da gordura em sorvetes. Boletin Do CEPPA, 30(1), 27–34.

Cruz, A. G., Antunes, A. E. C., Spuza, A. L. O. P., Faria, J. A. F., & Saad, S. M. I. (2009). Ice-cream as a probiotic food carrier. Food Research International, 42(9), 1233–1239. https://doi.org/10.1016/j.foodres.2009.03.020

Dekker, P. J. T., Koenders, D., & Bruins, M. J. (2019). Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients, 11(551), 1–14. https://doi.org/10.3390/nu11030551

Flores, A. A., & Goff, H. D. (1999). Ice Crystal Size Distributions in Dynamically Frozen Model Solutions and Ice Cream as Affected by Stabilizers. Journal of Dairy Science, 82(7), 1399–1407. https://doi.org/10.3168/jds.S0022-0302(99)75366-X

Francisquini, A., Rocha, J., Martins, E., Stephani, R., Henrique, P., Toledo, I. R., Perrone, Í. T., & Carvalho, A. F. De. (2020). 5-Hydroxymethylfurfural formation and color change in lactose-hydrolyzed Dulce de leche. Journal of Dairy Research, 86(477–482). https://doi.org/doi.org/10.1017/S0022029919000815

Goff, H. D. (2002). Formation and stabilisation of structure in ice-cream and related products. Current Opinion in Colloid and Interface Science, 7, 432–437.

Goff, H. D. (2008). 65 Years of ice cream science. International Dairy Journal, 18, 754–758. https://doi.org/10.1016/j.idairyj.2008.03.006

Hartel, R. W. (1996). Ice crystallization during the manufacture of ice cream. Trends in Food Science & Technology, 71(7), 315–321.

Homayouni, A., Javadi, M., Ansari, F., Pourjafar, H., Jafarzadeh, M., & Barzegar, A. (2018). Advanced Methods in Ice Cream Analysis : a Review. Food Analytical Methods, 11, 3224–3234.

Horner, T. W., Dunn, M. L., Eggett, D. L., & Ogden, L. V. (2011). β-Galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures. Journal of Dairy Science, 94(7), 3242–3249. https://doi.org/10.3168/jds.2010-3742

Kaleda, A., Tsanev, R., Klesment, T., Vilu, R., & Laos, K. (2018). Ice cream structure modi fi cation by ice-binding proteins. Food Chemistry, 246, 164–171. https://doi.org/10.1016/j.foodchem.2017.10.152

Kruif, C. G., Tuinier, R., Holt, C., Timmins, P. A., & Rollema, H. S. (2002). Physicochemical Study of K- and ?-Casein Dispersions and the Effect of Cross-Linking by Transglutaminase. Langmuir, 18(12), 4885–4891.

Kuraishi, C., Yamazaki, K., & Susa, Y. (2001). Transglutaminase: Its utilization in the food industry. Food Reviews International, 17(2), 221–246.

Matsumura, Y., Lee, D., & Mori, T. (2000). Molecular weight distributions of a -lactalbumin polymers formed by mammalian and microbial transglutaminases. Food Hydr, 14, 49–59.

Medeiros, A. C., Filho, E. R. T., & Bolini, H. M. A. (2019). Impact of Natural and Artificial Sweeteners Compounds in the Sensory Profile and Preference Drivers Applied to Traditional, Lactose-Free, and Vegan Frozen Desserts of Chocolate Flavor. Journal of Food Science, 102(9), 7838–7839.

Metwally, A. M. M. E. (2007). Effect of enzymatic cross-linking of milk proteins on properties of ice cream with different composition. International Journal of Food Science and Technology, 42, 939–947. https://doi.org/10.1111/j.1365-2621.2006.01314.x

Muse, M. R., & Hartel, R. W. (2004). Ice Cream Structural Elements that Affect Melting Rate and Hardness. Journal of Dairy Science, 87(1), 1–10. https://doi.org/10.3168/jds.S0022-0302(04)73135-5

Ndoye, F. T., & Alvarez, G. (2014). Characterization of ice recrystallization in ice cream during storage using the focused beam reflectance measurement. Journal of Food Engineering, 1–11. https://doi.org/10.1016/j.jfoodeng.2014.09.014

Pandalaneni, K., & Amamcharla, J. K. (2016). Focused beam reflectance measurement as a tool for in situ monitoring of the lactose crystallization process. Journal of Dairy Science, 99(7), 5244–5253. https://doi.org/10.3168/jds.2015-10643

Patel, M. R., Baer, R. J., & Acharya, M. R. (2006). Increasing the Protein Content of Ice Cream. Journal of Dairy Science, 89, 1400–1406. https://doi.org/10.3168/jds.S0022-0302(06)72208-1

Regand, A., & Goff, H. D. (2003). Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocolloids, 17, 95–102.

Rodrigues-Nogales, J. M. (2006). Enhancement of transglutaminase-induced protein cross-linking by preheat treatment of cows ’ milk : A statistical approach. International Dairy Journal, 16, 26–32. https://doi.org/10.1016/j.idairyj.2005.01.003

Rodrigues, M. I., & Iemma, A. F. (2014). Experimental design and process optimization. CRC Press.

Schorsch, C., Carrie, H., & Norton, I. T. (2000). Cross-linking casein micelles by a microbial transglutaminase : infuence of cross-links in acid-induced gelation. International Dairy Journ, 10, 529–539.

Sharma, R., Chr, P., & Qvist, K. B. (2001). Influence of transglutaminase treatment of skim milk on the formation of e - ( g -glutamyl ) lysine and the susceptibility of individual proteins towards crosslinking. International Dairy Journal, 11, 785–793.

Skryplonek, K., Henriques, M., Gomes, D., Viegas, J., Fonseca, C., Pereira, C., Dmytrów, I., & Mituniewicz-małek, A. (2019). Characteristics of lactose-free frozen yogurt with κ-carrageenan and corn starch as stabilizers. Journal of Dairy Science, 102(9), 7838–7848. https://doi.org/10.3168/jds.2019-16556

Tsuchiya, A.C., Da Silva, A. D. G. M., Brandt, D., Kalschne, D. L., Drunkler, D. A., & Colla, E. (2017). Lactose-reduced ice cream enriched with whey powder. Translation and Interpreting, 38(2). https://doi.org/10.5433/1679-0359.2017v38n2p749

Tsuchiya, Ana Claudia, Monteiro, A. G., Brandt, D., Kalschne, D. L., Drunkler, D. A., & Colla, E. (2017). Lactose-reduced ice cream enriched with whey powder. Semina: Ciências Agrárias, 38(2), 749–758. https://doi.org/10.5433/1679-0359.2017v38n2p749

Wang, J., Zhao, M., Yang, X., Jiang, Y., & Chun, C. (2007). Gelation behavior of wheat gluten by heat treatment followed by transglutaminase cross-linking reaction. Food Hydrocolloids, 21, 174–179. https://doi.org/10.1016/j.foodhyd.2006.03.006

Downloads

Published

02/12/2020

How to Cite

PEREIRA, C. .; SCHMIDT, C. A. P. .; KALSCHNE, D. L.; CARPES, S. T. .; OURIQUE, F.; FERREIRA, C. .; GRINEVICIUS, V. M. A. de S. .; ZIBETTI, A. W.; BARRETO, P. L. M.; PEDROSA, R. C. .; SANT’ANNA, E. S. . Effect of lactase, transglutaminase and temperature on ice cream crystal by a response surface methodology approach. Research, Society and Development, [S. l.], v. 9, n. 11, p. e72191110138, 2020. DOI: 10.33448/rsd-v9i11.10138. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10138. Acesso em: 28 apr. 2024.

Issue

Section

Agrarian and Biological Sciences