Efecto de la lactasa, transglutaminasa y temperatura en cristales de helado considerando un enfoque de metodología de superficie de respuesta

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.10138

Palabras clave:

Diseño compuesto central y rotativo; Enzimas; Microscopía; Tamaño de cristal; Helado de fresa.

Resumen

Este estudio tuvo como objetivo evaluar los cristales de helado considerando la adición de las enzimas lactasa (0.3% a 0.9%) y transglutaminasa (0.6% a 7.4%), utilizando diferentes temperaturas de incubación (13 a 47 °C) através de un diseño compuesto central y rotativo 23 (CCRD). El contenido de cristales se estimó extendiendo helado en hoja de vidrio y las imágenes de los cristales se obtuvieron en un microscopio óptico de campo de luz para contar y determinar el tamaño de los cristales utilizando el software Image J. Todo helado preparado a 40 °C (T2 , T6 y T8) y el tratamiento TA2 (formulación similar al tratamiento T2) tuvo un contenido de cristales pequeño en comparación con temperaturas de 20 y 30 °C; probablemente se asoció a una presencia extensa de burbujas de aire, glóbulos grasos y algunas micelas de caseína, favoreciendo la aglomeración de pequeños cristales que forman una textura más firme, lisa y cohesiva. Además, el uso combinado de enzimas lactasa y transglutaminasa en helados es una estrategia viable, eficaz y posible para la producción de helados. Además, el uso de la metodología de superficie de respuesta fue eficaz para seleccionar la mejor formulación en relación con las características deseables para el helado.

Biografía del autor/a

Celeide Pereira, Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná, Câmpus Medianeira

Carla Adriana Pizarro Schmidt, Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná, Câmpus Medianeira

Solange Teresinha Carpes, Universidade Tecnológica Federal do Paraná

Universidade Tecnológica Federal do Paraná, Câmpus Pato Branco

Fabiana Ourique, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Chirle Ferreira, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Valdelucia Maria Alves de Souza Grinevicius, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

André Wüst Zibetti, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Pedro Luiz Manique Barreto, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Rozangela Curi Pedrosa, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Ernani Sebastião Sant’Anna, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina

Citas

Adhikari, B. M., Truong, T., Prakash, S., Bansal, N., & Bhandari, B. (2020). Impact of incorporation of CO2 on the melting, texture and sensory attributes of soft-serve ice cream. International Dairy Journal, 104789. https://doi.org/10.1016/j.idairyj.2020.104789

Al, M., Ersoz, F., Ozaktas, T., Turkanoglu-Ozçelik, A., & Kuçukçetin, A. (2020). Comparison of the effects of adding microbial transglutaminase to milk and ice cream mixture on the properties of ice cream. International Journal of Dairy Technology, 0, 1–7. https://doi.org/10.1111/1471-0307.12707

Aloglu, H. S., Ozcan, Y., Karasu, S., Cetin, B., & Sagdic, O. (2018). Influence of transglutaminase treatment on the physicochemical , rheological , and melting properties of ice cream prepared from goat milk. Mljekarstvo, 68(2), 126–138. https://doi.org/10.15567/mljekarstvo.2018.0206

Cavender, G. A., & Kerr, W. L. (2020). Microfluidization of full-fat ice cream mixes : Effects on rheology and microstructure. Journal of Food Process Engineering, 43(e13350), 1–12. https://doi.org/10.1111/jfpe.13350

Chang, Y., & Hartel, R. W. (2002). Development of air cells in a batch ice cream freezer. Journal of Food Engineering, 55, 71–78.

Costa, F F, Resende, J. V, Abreu, L. R., & Goff, H. D. (2008). Effect of Calcium Chloride Addition on Ice Cream Structure and Quality. Journal of Dairy Science, 91(6), 2165–2174. https://doi.org/10.3168/jds.2007-0932

Costa, Fabiano Freire, Resende, J. V., & Abreu, L. R. (2012). Estabilidade da gordura em sorvetes. Boletin Do CEPPA, 30(1), 27–34.

Cruz, A. G., Antunes, A. E. C., Spuza, A. L. O. P., Faria, J. A. F., & Saad, S. M. I. (2009). Ice-cream as a probiotic food carrier. Food Research International, 42(9), 1233–1239. https://doi.org/10.1016/j.foodres.2009.03.020

Dekker, P. J. T., Koenders, D., & Bruins, M. J. (2019). Lactose-Free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients, 11(551), 1–14. https://doi.org/10.3390/nu11030551

Flores, A. A., & Goff, H. D. (1999). Ice Crystal Size Distributions in Dynamically Frozen Model Solutions and Ice Cream as Affected by Stabilizers. Journal of Dairy Science, 82(7), 1399–1407. https://doi.org/10.3168/jds.S0022-0302(99)75366-X

Francisquini, A., Rocha, J., Martins, E., Stephani, R., Henrique, P., Toledo, I. R., Perrone, Í. T., & Carvalho, A. F. De. (2020). 5-Hydroxymethylfurfural formation and color change in lactose-hydrolyzed Dulce de leche. Journal of Dairy Research, 86(477–482). https://doi.org/doi.org/10.1017/S0022029919000815

Goff, H. D. (2002). Formation and stabilisation of structure in ice-cream and related products. Current Opinion in Colloid and Interface Science, 7, 432–437.

Goff, H. D. (2008). 65 Years of ice cream science. International Dairy Journal, 18, 754–758. https://doi.org/10.1016/j.idairyj.2008.03.006

Hartel, R. W. (1996). Ice crystallization during the manufacture of ice cream. Trends in Food Science & Technology, 71(7), 315–321.

Homayouni, A., Javadi, M., Ansari, F., Pourjafar, H., Jafarzadeh, M., & Barzegar, A. (2018). Advanced Methods in Ice Cream Analysis : a Review. Food Analytical Methods, 11, 3224–3234.

Horner, T. W., Dunn, M. L., Eggett, D. L., & Ogden, L. V. (2011). β-Galactosidase activity of commercial lactase samples in raw and pasteurized milk at refrigerated temperatures. Journal of Dairy Science, 94(7), 3242–3249. https://doi.org/10.3168/jds.2010-3742

Kaleda, A., Tsanev, R., Klesment, T., Vilu, R., & Laos, K. (2018). Ice cream structure modi fi cation by ice-binding proteins. Food Chemistry, 246, 164–171. https://doi.org/10.1016/j.foodchem.2017.10.152

Kruif, C. G., Tuinier, R., Holt, C., Timmins, P. A., & Rollema, H. S. (2002). Physicochemical Study of K- and ?-Casein Dispersions and the Effect of Cross-Linking by Transglutaminase. Langmuir, 18(12), 4885–4891.

Kuraishi, C., Yamazaki, K., & Susa, Y. (2001). Transglutaminase: Its utilization in the food industry. Food Reviews International, 17(2), 221–246.

Matsumura, Y., Lee, D., & Mori, T. (2000). Molecular weight distributions of a -lactalbumin polymers formed by mammalian and microbial transglutaminases. Food Hydr, 14, 49–59.

Medeiros, A. C., Filho, E. R. T., & Bolini, H. M. A. (2019). Impact of Natural and Artificial Sweeteners Compounds in the Sensory Profile and Preference Drivers Applied to Traditional, Lactose-Free, and Vegan Frozen Desserts of Chocolate Flavor. Journal of Food Science, 102(9), 7838–7839.

Metwally, A. M. M. E. (2007). Effect of enzymatic cross-linking of milk proteins on properties of ice cream with different composition. International Journal of Food Science and Technology, 42, 939–947. https://doi.org/10.1111/j.1365-2621.2006.01314.x

Muse, M. R., & Hartel, R. W. (2004). Ice Cream Structural Elements that Affect Melting Rate and Hardness. Journal of Dairy Science, 87(1), 1–10. https://doi.org/10.3168/jds.S0022-0302(04)73135-5

Ndoye, F. T., & Alvarez, G. (2014). Characterization of ice recrystallization in ice cream during storage using the focused beam reflectance measurement. Journal of Food Engineering, 1–11. https://doi.org/10.1016/j.jfoodeng.2014.09.014

Pandalaneni, K., & Amamcharla, J. K. (2016). Focused beam reflectance measurement as a tool for in situ monitoring of the lactose crystallization process. Journal of Dairy Science, 99(7), 5244–5253. https://doi.org/10.3168/jds.2015-10643

Patel, M. R., Baer, R. J., & Acharya, M. R. (2006). Increasing the Protein Content of Ice Cream. Journal of Dairy Science, 89, 1400–1406. https://doi.org/10.3168/jds.S0022-0302(06)72208-1

Regand, A., & Goff, H. D. (2003). Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocolloids, 17, 95–102.

Rodrigues-Nogales, J. M. (2006). Enhancement of transglutaminase-induced protein cross-linking by preheat treatment of cows ’ milk : A statistical approach. International Dairy Journal, 16, 26–32. https://doi.org/10.1016/j.idairyj.2005.01.003

Rodrigues, M. I., & Iemma, A. F. (2014). Experimental design and process optimization. CRC Press.

Schorsch, C., Carrie, H., & Norton, I. T. (2000). Cross-linking casein micelles by a microbial transglutaminase : infuence of cross-links in acid-induced gelation. International Dairy Journ, 10, 529–539.

Sharma, R., Chr, P., & Qvist, K. B. (2001). Influence of transglutaminase treatment of skim milk on the formation of e - ( g -glutamyl ) lysine and the susceptibility of individual proteins towards crosslinking. International Dairy Journal, 11, 785–793.

Skryplonek, K., Henriques, M., Gomes, D., Viegas, J., Fonseca, C., Pereira, C., Dmytrów, I., & Mituniewicz-małek, A. (2019). Characteristics of lactose-free frozen yogurt with κ-carrageenan and corn starch as stabilizers. Journal of Dairy Science, 102(9), 7838–7848. https://doi.org/10.3168/jds.2019-16556

Tsuchiya, A.C., Da Silva, A. D. G. M., Brandt, D., Kalschne, D. L., Drunkler, D. A., & Colla, E. (2017). Lactose-reduced ice cream enriched with whey powder. Translation and Interpreting, 38(2). https://doi.org/10.5433/1679-0359.2017v38n2p749

Tsuchiya, Ana Claudia, Monteiro, A. G., Brandt, D., Kalschne, D. L., Drunkler, D. A., & Colla, E. (2017). Lactose-reduced ice cream enriched with whey powder. Semina: Ciências Agrárias, 38(2), 749–758. https://doi.org/10.5433/1679-0359.2017v38n2p749

Wang, J., Zhao, M., Yang, X., Jiang, Y., & Chun, C. (2007). Gelation behavior of wheat gluten by heat treatment followed by transglutaminase cross-linking reaction. Food Hydrocolloids, 21, 174–179. https://doi.org/10.1016/j.foodhyd.2006.03.006

Descargas

Publicado

02/12/2020

Cómo citar

PEREIRA, C. .; SCHMIDT, C. A. P. .; KALSCHNE, D. L.; CARPES, S. T. .; OURIQUE, F.; FERREIRA, C. .; GRINEVICIUS, V. M. A. de S. .; ZIBETTI, A. W.; BARRETO, P. L. M.; PEDROSA, R. C. .; SANT’ANNA, E. S. . Efecto de la lactasa, transglutaminasa y temperatura en cristales de helado considerando un enfoque de metodología de superficie de respuesta. Research, Society and Development, [S. l.], v. 9, n. 11, p. e72191110138, 2020. DOI: 10.33448/rsd-v9i11.10138. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10138. Acesso em: 15 ene. 2025.

Número

Sección

Ciencias Agrarias y Biológicas