Compuestos bioactivos y actividad antioxidante en variedades de tomate (Lycopersicon esculentum L.) in natura y después del procesamiento térmico
DOI:
https://doi.org/10.33448/rsd-v9i11.10192Palabras clave:
Procesamiento de alimentos; Carotenoides; Licopeno; Compuestos fenólicos; Flavonoides.Resumen
El objetivo del estudio fue evaluar el impacto del procesamiento por cocción de frutas frescas sobre el contenido de compuestos bioactivos - vitamina C y ácido ascórbico, compuestos fenólicos, flavonoides, carotenoides y antocianinas, licopeno y β-caroteno - y sobre la actividad antioxidante - DPPH y FRAP - 9 variedades de tomates comerciales y no comerciales. Los frutos se recolectaron cuando alcanzaron el punto de maduración fisiológica, siendo seleccionados y evaluados in natura y luego de triturados y cocidos durante 30 minutos. Al finalizar el experimento se encontró que todos los compuestos bioactivos analizados mostraron reducciones cuantitativas cuando se procesaron los frutos, siendo los cultivares de cereza - 7, 8 y 9 - los que mostraron resultados superiores en relación a los diferentes compuestos bioactivos evaluados, mostrando ser de interés para mejor explorado. En cuanto a las actividades antioxidantes, los frutos procesados de estos cultivares presentaron menores pérdidas mostrando potencial para ser sometidos a procesamiento.
Citas
Abreu, W. C., & Barcelos, M. F. P. (2012). Atividade antioxidante total da polpa de tomate submetida ao processamento térmico doméstico em diferentes tempos. Cient Ciênc Biol Saúde, 14(2), 71-6.
Aherne, S. A., Jiwan, M. A., Daly, T., O’brien, N. M. (2009). Geographical location has greater impact on carotenoid content and bioaccessibility from tomatoes than variety. Plant Foods Hum Nutr, 64, (4), 250–256. https://doi.org/10.1007/s11130-009-0136-x
Anthon, G. E., Barrett, D. M. (2012). Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chemistry, 132(2), 915-920. http://dx.doi.org/10.1016/j.
Araujo, J. C., Silva, P. P. M., Telhado, S. F. P., Sakai, R. H., Spoto, M. H. F., Melo, P. C. T. (2014). Physico-chemical and sensory parameters of tomato cultivares grown in organic systems. Horticultura Brasileira, 32(2), 205-209. https://dx.doi.org/10.1590/S0102-05362014000200015
Azeez, L., Segun, A. A., Oyedeji, A. O., Adetoro, R. O., Tijani, K. O. (2019). Bioactive compounds’ contents, drying kinetics and mathematicalmodelling of tomato slices influenced by drying temperatures and time. Journal of the Saudi Society of Agricultural Sciences, 18, 120–126121. https://doi.org/10.1016/j.jssas.2017.03.002
Benzie, I. F. F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry 239. 70–76. http://dx.doi.org/10.1006/abio.1996.0292
Boiteux, L. S., Fonseca, M. E. N., Giordano, L. B., Melo, P. C. T. (2012). Melhoramento genético. In F. M. V. T. Clemente & L. S. Boiteux (Ed.), Produção de tomate para processamento industrial (pp. 31-50). Brasília: Embrapa.
Boonpangrak, S., Lalitmanat, S., Suwanwong, Y. (2016). Analysis of Ascorbic Acid and Isoascorbic Acid in Orange and Guava Fruit Juices Distributed in Thailand by LC-IT-MS/MS. Food Anal. Methods, 9:1616. https://doi.org/10.1007/s12161-015-0337-x
Borguini, R. G. (2002). Tomate (Lycopersicon esculentum Mill.) orgânico: o conteúdo nutricional e a opinião do consumidor. 2002. 110 f. Dissertação (Mestrado em Agronomia)-Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba.
Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie, 28, 25-30, https://doi.org/10.1016/S0023-6438(95)80008-5
Cemeroglu, B., Karadeniz, F., Ozkan, M. (2003). Meyve sebze isleme teknolojisi. Gıda Teknolojisi Yayınları, 28, 469-472.
Chanforan, C., Loonis, M., Mora, N. (2012). The impact of industrial processing on health-beneficial tomato microconstituents. Food Chem., 134, 1786–1795. https://doi.org/10.1016/j.foodchem.2012.03.077
Cole, E., & Kapur, N. (1957). The stability of lycopene. I.‐Degradation by oxygen. Journal of the Science of Food and Agriculture, 8:6, 360-365. https://doi.org/10.1002/jsfa.2740080610
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 3, 350-356. https://doi.org/10.1021/ac60111a017
Food and Agricultural Organization - FAO. (2019). FAO Statistical Yearbook. New York, Recuperado de www.fao.com.
Instituto Adolfo Lutz - IAL. (2005). Métodos físico-químicos para análise de alimentos. 4 ed. Brasília: ANVISA,
Ilahy, R, Hduder, C, Lenucci, M. S., Tlili, I, Dalessandro, G. (2011). Phytochemical composition and antioxidant activity of highlycopene tomato (Solanum lycopersicum L.) cultivares grown in Southern Italy. Scientia Horticulturae, 127:3, 255-261. https://doi.org/10.1016/j.scienta.2010.10.001
Kalogeropoulos, N., Chiou, A., Pyriochou, V. (2012). Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT - Food Sci Technol., 49, 213-216. https://doi.org/10.1016/j.lwt.2011.12.036
Nagata M., & Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaish, 39:10, 925-928. https://doi.org/10.3136/nskkk1962.39.925
Nicoli, M., Anese, M., Parpinel, M. (1999). Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci Technol., 10, 94–100. https://doi.org/10.1016/S0924-2244(99)00023-0.
Perez-Conesa, D., Garcia-Alonso, J., Garcia-Valverde, V., Iniesta, M. D., Jacob, K., Sanchez-Siles, L. M. (2009). Changes in bioactive compounds and antioxidant activity during homogenization and thermal processing of tomato puree. Innovative. Food Science and Emerging Technology, 10:2, 179–188. https://doi.org/10.1016/j.ifset.2008.12.001
Pernice, R., Parisi, M., Giordano, I., Pentangelo, A., Graziani, J., Gallo, M., Fogliano, V., Ritieni, A. (2010). Antioxidants profile of small tomato fruits: Effect of irrigationand industrial process. Scientia Horticulturae, 126, 156–163. https://doi.org/10.1016/j.scienta.2010.06.021
Raffo, A., La Malfa, G., Fogliano, V., Maiani, G., Quaglia, G. (2006). Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). Journal of Food Composition and Analysis, 19, 11–19. https://doi.org/10.1016/j.jfca.2005.02.003
Resende, E. C. O. (2010). Enzimas antioxidantes em frutos com diferentes padrões de amadurecimento. Orientadora: BRON, I. U. Campinas: IAC, 2010. 67f. Dissertação (Mestrado) – Instituto Agronômico, Campinas, Recuperado de http://www.iac.sp.gov.br/areadoinstituto/posgraduacao/dissertacoes/Evellyn%20Couto%20Oliveira.pdf. Acesso em: 07 jan. 2020.
Scalfi, L., Fogliano, V., Pentangelo, A. (2000). Antioxidant activity and general fruit characteristics in different ecotypes of Corbarini small tomatoes. J Agric Food Chem., 48:4, 1363–1366. https://doi.org/10.1021/jf990883h
Shi, J., Dai, Y., Kakuda, Y., Mittal, G., Xue, S. J. (2008). Effect of heating and exposure to light on the stability of lycopene in tomato purée. Food Control, 19:5, 514-520, https://doi.org/10.1016/j.foodcont.2007.06.002
Shi, J., Kakuda, Y., Yeung, D. 2004. Antioxidative properties of lycopene and other carotenoids from tomatoes: synergistic effects. Biofactors, 21, 203–210.
Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337-354. https://doi.org/10.1016/S0034-4257(02)00010-X
Singh, P., & Goyal, G. K. (2008). Dietary lycopene: its properties and anticarcinogenic effects. Compr Rev Food Sci Food Saf, 7, 255–270. https://doi.org/10.1111/j.1541-4337.2008.00044.x
Singleton, V. L., & Rossi Jr, J. A. (1965). Colorimetry of total phenolics with phosphomolybidic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.
Singleton, V. L., Orthofer, R., Lamuela, R. M. 1999. Analysis of total phenol and other oxidation subtrates and antioxidants by means of Folin-Ciocauteau reagent. Methods of Enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Souza, A. V., Vieira, M. R. S., Putti, F. F. (2018). Correlações entre compostos fenólicos e atividade antioxidante em casca e polpa de cultivares de uva de mesa. Brazilian Journal of Food and Technology, 21. https://doi.org/10.1590/1981-6723.10317
Szabo, K., Cătoi, A. F., Vodnar, D. C. (2018). Bioactive Compounds Extracted from Tomato Processing by-Products as a Source of Valuable Nutrients. Plant Foods Hum Nutr., 73:268. https://doi.org/10.1007/s11130-018-0691-0
Takeoka, G. R., Dao, L., Flessa, S., Gillespie, D. M., Jewell, W. T., Huebner, B. (2003). Processing effects on lycopene content and antioxidant activity of tomatoes. J Agric Food Chem.,, 49, 3713-7. https://doi.org/10.1021/jf0102721
Terada, M, Watanabe, Y, Kunitoma, M, Hayashi, E. (1978). Diferential rapid analyses of ascobic acid and ascorbic acid 2-sulfate by dinitrophenil hydrazine method. Am Biochem., 84, 604-608. https://doi.org/10.1016/0003-2697(78)90083-0
Taco -Tabela Brasileira de Composição de Alimentos/Nepa. (4th ed.). Campinas: Nepa-Unicamp, 2011
Vanzoonen, P. (1996). Analytical methods for pesticide residues in foodstuffs. (6th ed.), Netherlands: Ministery of Public Health, Welfare and Sport.
Vieira, M. C. S. (2016). Investigação dos compostos bioativos em tomates (Lycopersicon esculentum L.) após processamento térmico. 59 f. Dissertação (Mestrado) - Curso de Mestre em Agronomia (horticultura), Faculdade de Ciências Agronômicas da Unesp – Campus de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu.
Vítolo, H. F., Souza, G., M., Silveira, J. (2012). Cross-scale multivariate analysis of hysiological esponses to high temperature in two tropical crops with C3 and C4 metabolism. Environmental and Experimental Botany, 80:1. https://doi.org/10.1016/j.envex pbot.2012.02.002
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Angela Vacaro de Souza; Jéssica Marques de Mello; Vitória Ferreira da Silva Fávaro; Victória Farias da Silva; Diogo de Lucca Sartori; Fernando Ferrari Putti
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.