Análisis de regresión de Cox de covariables composicionales relacionadas con la muerte del receptor de trasplante de riñón en el noreste de Brasil: modelado de covariables asociadas con falla del aloinjerto renal
DOI:
https://doi.org/10.33448/rsd-v9i11.10276Palabras clave:
Trasplante de riñón; Progresión de la función renal; Análisis de supervivencia; Modelo de regresión de Cox.Resumen
Introducción: Trasplante de riñón (TR) tiene supervivencia más alta entre las terapias de reemplazo renal (TRR). Objetivo: Analizar la mortalidad por todas las causas en los receptores de RT e identificar las covariables asociadas con un mayor riesgo de muerte. Metodología: Estudio de cohorte utilizando historias clínicas de 605 trasplantado con siete años de seguimiento (2011-2018). Se excluyeron los registros con datos insuficientes o de pacientes con tratamiento incompleto. Fueron analizados datos demográficos, clínicos y de laboratorio, duración de TRR, tipo de donante, compatibilidad inmunológica, panel reactivo de anticuerpos, infecciones y uso de máquina de perfusión hipotérmica (MPH). Se estimaron la razón de riesgo (HR) y la densidad de incidencia de las muertes por todas las causas. Resultados: 15 de los 553 receptores de TR murieron durante el seguimiento. Supervivencia en el primer año post-TR fue 98,0% y en el quinto año 93,2%. Densidad de incidencia de las muertes fue 10/1.000 personas-año. Covariables relacionadas con mayor riesgo de muerte fueron pielonefritis del aloinjerto ≥6 meses y función retardada del injerto >4 semanas. Supervivencia entre los receptores de TR con pérdida >5mL/min/1,73m2/año en la tasa de filtración glomerular estimada (TFGe) fue menor que en los demás (88% vs. 97%). Covariables asociadas con la mortalidad postrasplante incluyeron obesidad pre-TR, MPH, pielonefritis del aloinjerto y diabetes de nueva aparición después del trasplante. Conclusión: La mortalidad post-TR es baja. Modelo de Cox demostró que TFGe >5ml/min/1,73m2/año, pielonefritis del aloinjerto ≥6 meses, obesidad pre-TR, glucemia en ayunas ≥126mg/dL presentaron la peor probabilidad de supervivencia. Disminución rápida de la TFGe reduce la probabilidad de supervivencia en esta población.
Citas
Abeling, T., Scheffner, I., Karch, A., Broecker, V., Koch, A., Haller, H., Schwarz, A., & Gwinner, W. (2019). Risk factors for death in kidney transplant patients: analysis from a large protocol biopsy registry. Nephrology Dialysis Transplantation, 34(7), 1171–1181. https://doi.org/10.1093/ndt/gfy131
Ariza-Heredia, E. J., Beam, E. N., Lesnick, T. G., Cosio, F. G., Kremers, W. K., & Razonable, R. R. (2014). Impact of urinary tract infection on allograft function after kidney transplantation. Clinical Transplantation, 28(6), 683–690. https://doi.org/10.1111/ctr.12366
Armitage, P., Berry, G., & Matthews, J. N. S. (2013). Statistical methods in medical research (4th Edition). Massachusetts: Wiley-Blackwell.
Ashby, V. B., Leichtman, A. B., Rees, M. A., Song, P. X.-K., Bray, M., Wang, W., & Kalbfleisch, J. D. (2017). A kidney graft survival calculator that accounts for mismatches in age, sex, HLA, and body size. Clinical Journal of the American Society of Nephrology, 12(7), 1148–1160. https://doi.org/10.2215/CJN.09330916
Bicalho, P. R., Requião-Moura, L. R., Arruda, É. F., Chinen, R., Mello, L., Bertocchi, A. P. F., Lamkowski Naka, E., Tonato, E. J., & Pacheco-Silva, A. (2019). Long-term outcomes among kidney transplant recipients and after graft failure: a single-center cohort study in Brazil. BioMed Research International, 2019, 7105084. https://doi.org/10.1155/2019/7105084
Chuang, P., Parikh, C. R., & Langone, A. (2005). Urinary tract infections after renal transplantation: a retrospective review at two US transplant centers. Clinical Transplantation, 19(2), 230–235. https://doi.org/10.1111/j.1399-0012.2005.00327.x
Cia, C.-T., Li, M.-J., Li, C.-W., Lee, N.-Y., Chang, S.-S., Lee, C.-C., & Ko, W.-C. (2016). Community-onset bacteremia in kidney transplant recipients: The recipients fare well in terms of mortality and kidney injury. Journal of Microbiology, Immunology and Infection, 49(5), 685–691. https://doi.org/10.1016/j.jmii.2014.08.027
Davidson, J. A., & Wilkinson, A. (2004). New-onset diabetes after transplantation 2003 International Consensus Guidelines: an endocrinologist’s view. Diabetes Care, 27(3), 805–812. https://doi.org/10.2337/diacare.27.3.805
Djamali, A., Samaniego, M., Muth, B., Muehrer, R., Hofmann, R. M., Pirsch, J., Howard, A., Mourad, G., & Becker, B. N. (2006). Medical care of kidney transplant recipients after the first posttransplant year. Clinical Journal of the American Society of Nephrology, 1(4), 623–640. https://doi.org/10.2215/CJN.01371005
Ducloux, D., Kazory, A., & Chalopin, J.-M. (2005). Posttransplant diabetes mellitus and atherosclerotic events in renal transplant recipients: a prospective study. Transplantation, 79(4), 438–443. https://doi.org/10.1097/01.TP.0000151799.98612.EB
Gönen, M., & Heller, G. (2005). Concordance probability and discriminatory power in proportional hazards regression. Biometrika, 92(4), 965–970. https://doi.org/10.1093/biomet/92.4.965
Jochmans, I., Moers, C., Smits, J. M., Leuvenink, H. G. D., Treckmann, J., Paul, A., Rahmel, A., Squifflet, J.-P., van Heurn, E., Monbaliu, D., Ploeg, R. J., & Pirenne, J. (2010). Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death. Annals of Surgery, 252(5), 756–764. https://doi.org/10.1097/SLA.0b013e3181ffc256
Jolissaint, J. S., & Tullius, S. G. (2017). Hospital do Rim, São Paulo: a world leader in kidney transplantation. Jornal Brasileiro de Nefrologia, 39(3), 234–235. https://doi.org/10.5935/0101-2800.20170047
Khan, N. A., Ma, I., Thompson, C. R., Humphries, K., Salem, D. N., Sarnak, M. J., & Levin, A. (2006). Kidney function and mortality among patients with left ventricular systolic dysfunction. Journal of the American Society of Nephrology, 17(1), 244–253. https://doi.org/10.1681/ASN.2005030270
Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y. L., Castro, A. F. 3rd, Feldman, H. I., Kusek, J. W., Eggers, P., Van Lente, F., Greene, T., & Coresh, J. (2009). A new equation to estimate glomerular filtration rate. Annals of Internal Medicine, 150(9), 604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006
Levin, A., Stevens, P. E., Bilous, R. W., Coresh, J., De Francisco, A. L. M., De Jong, P. E., Griffith, K. E., Hemmelgarn, B. R., Iseki, K., Lamb, E. J., Levey, A. S., Riella, M. C., Shlipak, M. G., Wang, H., White, C. T., & Winearls, C. G. (2013). Kidney disease: improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney International Supplements, 3(1), 1–150. https://doi.org/10.1038/kisup.2012.73
Matsushita, K., Selvin, E., Bash, L. D., Franceschini, N., Astor, B. C., & Coresh, J. (2009). Change in estimated GFR associates with coronary heart disease and mortality. Journal of the American Society of Nephrology, 20(12), 2617–2624. https://doi.org/10.1681/ASN.2009010025
Ojo, A. O. (2005). Expanded criteria donors: process and outcomes. Seminars in Dialysis, 18(6), 463–468. https://doi.org/10.1111/j.1525-139X.2005.00090.x
Orlandi, P. F., Cristelli, M. P., Aldworth, C. A. R., Freitas, T. V. de S., Felipe, C. R., Silva Junior, H. T., & Pestana, J. O. M. de A. (2015). Long-term outcomes of elderly kidney transplant recipients. Jornal Brasileiro de Nefrologia, 37(2), 212–220. https://doi.org/10.5935/0101-2800.20150034
Park, J.-S., Oh, I. H., Lee, C. H., Kim, G.-H., & Kang, C. M. (2013). The rate of decline of glomerular filtration rate is a predictor of long-term graft outcome after kidney transplantation. Transplantation Proceedings, 45(4), 1438–1441. https://doi.org/10.1016/j.transproceed.2012.10.052
Port, F. K., Bragg-Gresham, J. L., Metzger, R. A., Dykstra, D. M., Gillespie, B. W., Young, E. W., Delmonico, F. L., Wynn, J. J., Merion, R. M., Wolfe, R. A., & Held, P. J. (2002). Donor characteristics associated with reduced graft survival: an approach to expanding the pool of kidney donors1. Transplantation, 74(9), 1281–1286. https://doi.org/10.1097/00007890-200211150-00014
Ramanan, P., & Razonable, R. R. (2013). Cytomegalovirus infections in solid organ transplantation: a review. Infection & Chemotherapy, 45(3), 260–271. https://doi.org/10.3947/ic.2013.45.3.260
Sampieri, R. H., Collado, C. F., & Lucio, M. P. B. (2013). Metodologia de pesquisa (5th Edition). Porto Alegre: Penso.
Sandal, S., Luo, X., Massie, A. B., Paraskevas, S., Cantarovich, M., & Segev, D. L. (2018). Machine perfusion and long-term kidney transplant recipient outcomes across allograft risk strata. Nephrology, Dialysis, Transplantation, 33(7), 1251–1259. https://doi.org/10.1093/ndt/gfy010
Schoenfeld, D. (1982). Partial residuals for the proportional hazards regression model. Biometrika, 69(1), 239–241. https://doi.org/10.1093/biomet/69.1.239
Shlipak, M. G., Katz, R., Kestenbaum, B., Siscovick, D., Fried, L., Newman, A., Rifkin, D., & Sarnak, M. J. (2009). Rapid decline of kidney function increases cardiovascular risk in the elderly. Journal of the American Society of Nephrology, 20(12), 2625–2630. https://doi.org/10.1681/ASN.2009050546
Srinivasan, D., Stoffel, J. T., Bradley, K., & Sung, R. S. (2019). Outcomes of kidney transplant recipients with posttransplant genitourinary infectious complications: a single center study. Experimental and Clinical Transplantation, 17(4), 470–477. https://doi.org/10.6002/ect.2017.0196
Stevens, P. E., & Levin, A. (2013). Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Annals of Internal Medicine, 158(11), 825–830. https://doi.org/10.7326/0003-4819-158-11-201306040-00007
Van Loon, E., Senev, A., Lerut, E., Coemans, M., Callemeyn, J., Van Keer, J. M., Daniëls, L., Kuypers, D., Sprangers, B., Emonds, M.-P., & Naesens, M. (2020). Assessing the complex causes of kidney allograft loss. Transplantation, 104(12), 2557–2566. https://doi.org/10.1097/TP.0000000000003192
Watson, C. J. E., Wells, A. C., Roberts, R. J., Akoh, J. A., Friend, P. J., Akyol, M., Calder, F. R., Allen, J. E., Jones, M. N., Collett, D., & Bradley, J. A. (2010). Cold machine perfusion versus static cold storage of kidneys donated after cardiac death: a UK multicenter randomized controlled trial. American Journal of Transplantation, 10(9), 1991–1999. https://doi.org/10.1111/j.1600-6143.2010.03165.x
Wekerle, T., Segev, D., Lechler, R., & Oberbauer, R. (2017). Strategies for long-term preservation of kidney graft function. The Lancet, 389(10084), 2152–2162. https://doi.org/10.1016/S0140-6736(17)31283-7
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Ubiracé Fernando Elihimas Júnior; Wallace Pereira; Eduardo Eriko Tenório de França; Orlando Vieira Gomes; Manoel Pereira Guimarães; Diogo Buarque Cordeiro Cabral; Frederico Castelo Branco Cavalcanti; Paulo Adriano Schwingel
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.