Actividad insecticida del aceite esencial de Pilocarpus spicatus Saint-Hilaire (Rutaceae) contra la plaga agrícola Dysdercus peruvianus (Guérin-Méneville, 1831) y Oncopeltus fasciatus (Dallas, 1852)

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i11.10489

Palabras clave:

Aceite essencial; Control de plagas; Dysdercus peruvianus; Oncopeltus fasciatus; Reguladores del crecimiento de insectos; Pesticida verde.

Resumen

Se realizaron estudios para evaluar la actividad insecticida del aceite esencial (AE) de Pilocarpus spicatus Saint-Hilaire (Rutaceae) sobre el desarrollo de los Hemiptera Dysdercus peruvianus (Guérin-Méneville, 1831) y Oncopeltus fasciatus (Dallas, 1852). El análisis por cromatografía de gases/espectrometría de masas reveló una composición química con sabineno (32,27%) y silvestreno (27,26%) como componentes principales. El tratamiento tópico y continuo con AE puro indujo 100% de mortalidad, mientras que las diluciones seriadas del AE indujeron diferentes niveles de letalidad en respuestas de dependencia de la dosis. Se determinaron la dosis letal mediana (DL50) y la dosis letal 90% (DL90) de los experimentos. Con frecuencia se observaron malformaciones en insectos y ninfas permanentes o supernumerarias después de los tratamientos, y el uso de microscopía electrónica de barrido permitió el análisis de cambios morfológicos. Los diferentes efectos biológicos del AE de P. spicatus apuntan a su potencial como una rica fuente de moléculas bioactivas para ser utilizadas como un método alternativo de control de insectos plagas agrícola.

Citas

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry. (4th ed.), Carol Stream, IL: Allured Publishing Corporation.

Armitage, P.; Berry, G. & Matthews, J. N. S. (2002). Comparison of several groups and experimental design. In: Armitage, P., Statistical Methods in Medical Research. Oxford: Blackwell Science Publishing.

Arunkumar, R., Nair, S. A., Rameshkumar, K. B. & Subramoniam, A. (2014). The essential oil constituents of Zornia diphylla (L.) Pers, and anti-inflammatory and antimicrobial activities of the oil. Records of Natural Products, 8:4, 385-393.

Avancini, G., Abreu, I. N., Saldana, M. D. A., Mohamed, R. S. & Mazzafera, P. (2003). Induction of pilocarpine formation in jaborandi leaves by sialicylic acid and methyl jasmonate. Phytochemistry, 63: 171-175.

Azambuja, P. D., Garcia, E. S. & Ribeiro, J. M. C. (1981). Effects of ecdisone on the metamorphosis and ecdysis prevention induced by precocene II in Rhodnius prolixus. General and Comparative Endocrinology, 45, 100-104.

Bai, H. & Koshy, G. (2004). Juvenomimetic activity of extracts of Thevetia neriifolia Juss. to Dysdercus cingulatus F. (Hemiptera: Pyrrhocoridae). Journal of Tropical Agriculture, 42 (1-2): 45-47.

Benelli, G.; Flamini, G.; Canale, A.; Molfetta, I.; Cioni, P. L. & Conti, B. (2012). Repellence of Hyptis suaveolens whole essential oil and major constituents against adults of the granary weevil Sitophilus granaries. Bulletin of Insectology, 65 (2): 177-183.

Chaubey, M. K. (2019). Essential oils as green pesticides of stored grain insects. European Journal of Biological Research, 9(4): 202-244.

Chegini, S. G. & Abbasipour, H. (2017). Chemical composition and insecticidal effects of the essential oil of cardamom, Elettaria cardamomum on the tomato leaf miner, Tuta absoluta. Toxin Reviews, 36:1, 12-17.

Chericoni, S., Flamini, G., Campeol, E., Cioni, P. L. & Morelli, I. (2004). GC-MS analyses of the essential oil from the aerial parts of Artemisia verlotiorum: variability during the year. Biochemical Systematics and Ecology, 32: 423-429.

Costa, J. F. O., Juiz, P., Pedro, A. S., David, J. P. L., David, J. M., Giulietti, A. M., França, F., Santos, R. R. & Soares, M. B. P. (2010). Immunomodulatory and antibacterial activities of extracts from Rutaceae species. Revista Brasileira de Farmacognosia, 20(4): 502-505.

Dorn, A. (1986). Effects of azadirachtin on reproduction and egg development of the heteropteran Oncopeltus fasciatus Dallas. Journal of Applied Entomology, 102, 313-319.

El-Sabrout, A. M., Salem, M. Z. M., Bin-Jumah, M. & Allam, A. A. (2019). Toxicological activity of some plant essential oils against Tribolium castaneum and Culex pipiens larvae. Processes, 7, 933.

Feder, D., Gonzalez, M. S., Mello, C. B., Santos, M. G., Rocha, L., Kelecom, A. & Folly, E. (2019). Exploring the insecticide and acaricide potential of development regulators obtained from Restinga vegetation from Brazil. Anais da Academia Brasileira de Ciências, 91, n. 1.

Fernandes, C. P., Xavier, A., Pacheco, J. P. F., Santos, M. G., Mexas, R., Ratcliffe, N. A., Gonzalez, M. S., Mello, C. B., Rocha, L. & Feder, D. (2013). Laboratory evaluation of the effects of Manilkara subsericea (Mart.) Dubard extracts and triterpenes on the development of Dysdercus peruvianus and Oncopeltus fasciatus. Pest Management Science, 69, 292-301.

Flora do Brasil. (2020). Pilocarpus spicatus A.St.-Hil. Retrieved from http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB898.

George, D. R., Finn, R. D., Graham, K. M. & Sparagano, O. A. E. (2014). Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasites & Vectors, 7:28.

Gonzalez, M. S., Lima, B. G., Oliveira, A. F. R., Nunes, D. D., Fernandes, C. P. F., Santos, M. G., Tietbohl, L. A. C., Mello, C. B., Rocha, L. & Feder, D. (2014). Effects of essential oil from leaves of Eugenia sulcata on the development of agricultural pest insects. Revista Brasileira de Farmacognosia, 24 (4): 413-418.

Gotlieb, O. R. & Magalhães, M. E. (1960). Modified distillation trap. Chemist Analyst, 49: 114.

Hummelbrunner, L. A. & Isman, M. B. (2001). Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep. Noctuidae). Journal of Agricultural and Food Chemistry, 49(2), 715–720.

Khan, I. & Qamar, A. (2011). Biological activity of andalin (flucycloxuron), a novel chitin synthesis inhibitor, on red cotton stainer Dysdercus koenigii (Fabricius). Biology and Medicine, 3 (2): 324-335.

Khan, I. & Qamar, A. (2012). Andalin, an insect growth regulator, as reproductive inhibitor for the red cotton stainer, Dysdercus koenigii (F.) (Hemiptera: Pyrrhocoridae). Academic Journal of Entomology, 5 (2): 113-121.

Lazzari, C. R. (1992). Circadian organization of locomotion activity in the haematophagous bug Triatoma infestans. Journal of Insect Physiology, 38: 895-903.

Liu, T. T., Chao, L. K. P., Hong, K. S., Huang, Y. J. & Yang, T. S. (2019). Composition and insecticidal activity of essential oil of Bacopa caroliniana and interactive effects of individual compounds on the activity. Insects, 11, 23.

López, M. D. & Pascual-Villalobos, M. J. (2010). Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Industrial Crops and Products, 31, 284–288.

Mafezoli, J., Vieira, P. C., Fernandes, J. B., Silva, M. F. G. F. & Albuquerque, S. (2000). In vitro activity of Rutaceae species against the trypomastigote form of Trypanosoma cruzi. Journal of Ethnopharmacology, 73, 335–340.

Mansour, E. S. S., Maatooq, G. T., Khalil, A. T., Marwan, E. S. M. & Sallam, A. A. (2004). Essential oil of Daucus glaber Forssk. Zeitschrift fur Naturforschung C, 59(5-6): 373-8.

Mello, C. B., Mendonça-Lopes, D., Feder, D., Uzeda, C. D., Carneiro, R. M. & Gonzalez, M.S. (2008). Laboratory evaluation of the effects of triflumuron on the development of Rhodnius prolixus nymph. Memórias do Instituto Oswaldo Cruz, 103: 839-842.

Mello, C. B., Uzeda, C. D., Bernardino, M. V., Lopes, D. M., Kelecom, A., Fevereiro, P. C. A., Guerra, M. S., Oliveira, A. P., Rocha, L. M. & Gonzalez, M. S. (2007). Effects of the essential oil obtained from Pilocarpus spicatus Saint-Hilaire (Rutaceae) on the development of Rhodnius prolixus nymphae. Brazilian Journal of Pharmacognosy, 17(4): 514-520.

Menichini, F., Tundis, R., Loizzo, M. R., Bonesi, M., Marrelli, M., Statti, G. A., Menichini, F. & Conforti, F. (2009). Acetylcholinesterase and butyrylcholinesterase inhibition of ethanolic extract and monoterpenes from Pimpinella anisoides V.Brig. (Apiaceae). Fitoterapia, 80, 297–300.

Merzendorfer, H. (2006). Insect chitin synthases: a review. Journal of Comparative Physiology B, 176(1): 1-15.

Mordue, A. J. & Nisbet, A. J. (2000). Azadirachtin from the neem tree Azadirachta indica: its action against insects. Anais da Sociedade Entomológica do Brasil, 29(4).

Oliveira, A. P., Cruz, R. A. S., Botas, G. S., Gonzalez. M. S., Santos, M. G., Teixeira, L. A. & Rocha, L. M. (2010). Chemical and biological investigations of Pilocarpus spicatus essential oils. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 9 (3), 206-211.

Pohlit, A. M., Rezende, A. A. R., Baldin, L. E. L., Lopes, N. P., & De Andrade Neto, V. F. (2011). Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases: a review. Plant Medicine, 77, 618–630.

Prieto, J. A., Patiño, O. J., Delgado, W. A., Moreno, J. P. & Cuca, L. E. (2010). Chemical composition, insecticidal, and antifungal activities of fruit essential oils of three Colombian Zanthoxylum species. Chilean Journal of Agricultural Research, 71, n. 1.

Redfern, R. E., Kelly, T. J., Borkovec, A. B. & Hayes, D. K. (1982). Ecdysteroid titers and molting aberrations in last-stage Oncopeltus nymphs treated with insect growth regulators. Pesticide, Biochemistry and Physiology, 18, 351-356.

Regnault-Roger, C. (1997). The potential of botanical essential oils for insects pest control. Integrated Pest Management Reviews, 2: 25-34.

Santos, A. P. & Moreno, P. R. H. (2004). Pilocarpus spp.: A survey of its chemical constituents and biological activities. Brazilian Journal of Pharmaceutical Sciences, 40, n. 2.

Santos, F. A., Cunha, G. M. A., Viana, G. S. B., Rao, V. S. N., Manoel, A. N. & Silveira, E. R. (1997). Antibacterial activity of essential oils from Psidium and Pilocarpus species of plants. Phytotherapy Research, 11, 67–69.

Savelev, S., Okello, E., Perry, N. S. L., Wilkins, R. M. & Perry, E. K. (2003). Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacology, Biochemistry and Behavior, 75, 661–668.

Saxena, B. P. & Srivastava, J. B. (1972). Studies on plant extracts with juvenile hormone activity. Effects of Iris ensata Thamb. (Iridaceae) on Dysdercus koenigii F. (Pyrrochoridae). Experientia, 28, 1, 112–113.

Senatore, F., Olivieiro, F., Scandolera, E., Taglialatela-Safati,

O., Roscigno, G., Zaccarselli, M. & De Falco, E. (2013). Chemical composition,

antimicrobial and antioxidant activities of anethole-rich oil from leaves of selected

varieties of fennel [Foeniculum vulgare Mill. ssp. vulgare var. azoricum (Mill.)

Thell] Fitoterapia, 90: 214-219.

Silva, J. C. R. & Rao, V. S. N. (1992). Involvement of serotonin and eicosanoids in the rat paw oedema response to the essential oil of Pilocarpus spicatus. Mediators of Inflammation, 1, 167-169.

Skorupa, L. A., Salatino, M. L. F. & Salatino, A. (1998). Hydrocarbons of leaf epicuticular waxes of Pilocarpus (Rutaceae): Taxonomic meaning. Biochemical, Systematics and Ecology, 26, 655 – 662.

Takano-Lee, M. & Edman, J. D. (2001). Movement of Rhodnius prolixus (Hemiptera: Reduviidae) within a simulated house environment. Journal of Medical Entomology, 38: 829-835.

Tietbohl, L. A. C., Lima, B. G., Fernandes, C. P., Santos, M. G., Silva,

F. E. B., Denardin, E. L. G., Bachinski, R., Alves, G. G., Silva, F. M. V. & Rocha, L. (2012). Comparative study and anticholinesterasic evaluation of essential oils from leaves, stems and flowers of Myrciaria floribunda (H.West ex Willd.) O. Berg.

Latin American Journal of Pharmacy, 31(4): 637-641.

Tietbohl, L. A. C., Mello, C. B., Silva, L. R., Dolabella, I. B., Franco, T. C., Enríquez, J. J. S., Santos, M. G., Fernandes, C. P., Machado, F. P., Mexas, R., Azambuja, P., Araújo, H. P., Moura, W., Ratcliffe, N. A., Feder, D., Rocha, L. & Gonzalez, M. S. (2020). Green insecticide against Chagas disease: effects of essential oil from Myrciaria floribunda (Myrtaceae) on the development of Rhodnius prolixus nymphs. Journal of Essential Oil Research. doi: 10.1080/10412905.2019.1631894.

Tripathi, A. K., Upadhyay, S., Bhuiyan, M. & Bhattacharya, P. R. (2009). A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytochemistry, 1(5), 52–63.

Wang, C. F., Yang, K., Zhang, H. M., Cao, J., Fang, R., Liu, Z. L., Du, S. S., Wang, Y. Y., Deng, Z. W. & Zhou, L. (2011). Components and insecticidal activity against the maize weevils of Zanthoxylum schinifolium fruits and leaves. Molecules, 16, 3077-3088.

Wang, Y., You, C. X., Yang, K., Chen, R., Zhang, W. J., Wu, Y., Liu, Z. L., Du, S. S. & Deng, Z. W. (2015). Chemical constituents and insecticidal activities of the essential oil from Alpinia blepharocalyx rhizomes against Lasioderma serricorne. Journal of the Serbian Chemical Society, 80 (2), 171–178.

Wang, Y., Zhang, L. T., Feng, Y. X., Zhang, D., Guo, S. S., Pang, X., Geng, Z. F., Xi, C. & Du, S. S. (2019). Comparative evaluation of the chemical composition and bioactivities of essential oils from four spice plants (Lauraceae) against stored-product insects. Industrial, Crops and Products, 140.

Wigglesworth, V. B. (1934). The physiology of ecdysis in Rhodnius prolixus (Hemiptera) II. Factors controlling moulting and metamorphosis. Quarterly Journal of Microscopical Science, 77: 191-222.

Wigglesworth, V. B. (1969). Chemical structure and juvenile hormone activity: comparative tests on Rhodnius prolixus. Journal of Insect Physiology, 15, 73-94.

Wigglesworth, V. B. (1972). The principles of insect physiology. Dordrecht: Springer.

Zhou, S., Wei, C., Zhang, C., Han, C., Kuchkarova, N. & Shao, H. (2019). Chemical composition, phytotoxic, antimicrobial and insecticidal activity of the essential oils of Dracocephalum integrifolium. Toxins, 11, 598.

Zoghbi, M. G. B., Pereira, R. A., Lima, G. S. L. & Bastos, M. N. C. (2014). Variation of essential oil composition of Tapirira guianensis Aubl. (Anacardiaceae) from two sandbank forests, North of Brazil. Química Nova, 37, 1188-1192.

Descargas

Publicado

06/12/2020

Cómo citar

APOLINÁRIO, R. .; NOGUEIRA, J. .; COSTA, M. G. da S. .; SANTOS-MALLET, J. .; SANTOS, M. G. .; AZAMBUJA, P. .; MELLO, C. B. .; GONZALEZ, M. S. .; ROCHA, L.; FEDER, M. D. Actividad insecticida del aceite esencial de Pilocarpus spicatus Saint-Hilaire (Rutaceae) contra la plaga agrícola Dysdercus peruvianus (Guérin-Méneville, 1831) y Oncopeltus fasciatus (Dallas, 1852). Research, Society and Development, [S. l.], v. 9, n. 11, p. e90091110489, 2020. DOI: 10.33448/rsd-v9i11.10489. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10489. Acesso em: 8 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas