Abordar la prospección fitoquímica de madera de Eucalyptus grandis tratada térmicamente
DOI:
https://doi.org/10.33448/rsd-v9i11.10537Palabras clave:
Tratamiento térmico; Extractos de madera; Extracto lipofílico.Resumen
Este trabajo tenia como objetivo investigar la prospección fitoquímica en madera tratada y no tratada térmicamente de Eucalyptus grandis con el fin de comprender la dinámica de los extractivos en relación al tratamiento térmico. Para eso, se elaboraron muestras de madera de E. grandis, las cuales se agruparon en regiones externas e internas. La mitad de las muestras de cada región fueron sometidas a tratamiento térmico a 190ºC. A partir de las muestras tratadas y no tratadas, se realizaron las pruebas fitoquímicas para detectar clases de metabolitos presentes en la madera de E. grandis con la madera en bruto, extracto hidrofílico y extracto lipofílico. El análisis fitoquímico detectó la presencia de alcaloides, compuestos fenólicos y triterpenoides en todos los extractos hidrofílicos de las especies estudiadas. Solo en la región más interna de la madera se encontró la presencia de flavanonoles, flavanonas y saponinas. Los taninos, leucoantocianidinas, triterpenoides y saponinas fueron influenciados por el tratamiento térmico. Las clases de flavonoides, xantonas y alcaloides son las más resistentes al tratamiento térmico. El análisis fitoquímico permitió identificar una nueva clase de extractivos que aparecieron tras el tratamiento térmico, las flavonas.
Citas
Abreu, H. S., Carvalho, A. M., Monteiro, M. B. O., Pereira, R. P. W., SILVA, H. R., Souza, K. C. A., Amparado, K. F. & Chalita, D. B. (2006). Métodos de análise em química da madeira. Floresta e ambiente, 0,1-20.
Antonio, R. D. (2011). Caracterização fitoquímica, morfoanatômica e atividades biológicas de Eucalyptus badjensis, Beuzev. & Welch., Myrtaceae. [Masters dissertation, Federal University of Paraná]. DSpace Repository. https://acervodigital.ufpr.br/handle/1884/26303
Barbosa, L. C. D. A., Maltha, C. R. A. & Cruz, M. P. (2005). Chemical composition of lipophilic and polar extractives of Eucalyptus grandis. Science and Engineering Journal, 15(2), 13–20
Borges, L. M. & Quirino, W. F. Higroscopicidade da madeira de Pinus caribaea var.hondurensis tratado térmicamente. (2004). Revista Biomassa & Energia, 1(2), 173-182.
Carvalho, C., Matta, S., Melo, F., Andrade, D., Carvalho, L., Nascimento, P., Silva, M. & Rosa, M. (2009). Cipó-cravo (Tynnanthus fasciculatus miers- Bignoniaceae): Estudo fitoquímico e toxicológico envolvendo Artemia salina. Revista Eletrônica de Farmácia, 6(1), 51-58.
Carvalho, J. C. T., Gosmann, G. & Schenkel, E. P. (2004). Compostos fenólicos simples e heterosídicos. In C. M. O. Simões (Ed.), Farmacognosia: da planta ao medicamento (pp.519-535). UFSC.
Chien, Y. C., Yang, T. C., Hung, K. C., Li, C. C., Xu, J. W. & Wu, J. H. (2018). Effects of heat treatment on the chemical compositions and thermal decomposition kinetics of Japanese cedar and beech wood. Polymer Degradation and Stability, 158, 220-227. http://dx.doi.org/10.1016/j.polymdegradstab.2018.11.003.
Costa, A. S. V. (1995). Identificação de substâncias secundárias presentes em leguminosas utilizadas como adubo verde. Ceres, 42(244), 585-598.
Croteau, R., Kutchan, T. M. & Lewis, N. G. (2000). Natural Products (Secondary Metabolites). Biochemistry and Molecular Biology of Plants, 24, 1250-1319.
Dai, J. & Mumper, R. J. (2010). Plant Phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352. http://dx.doi.org/10.3390/molecules15107313.
Döll-Boscardin, P. M., Farago, P. V., Nakashima, T., Santos, P. E. T. & Paula, J. F. P. (2010). Estudo anatômico e prospecção fitoquímica de folhas de Eucalyptus benthamii Maiden et Cambage. Latin American Journal of Pharmacy, 29(1), 94-101.
Esteves, B., Graça, J. & Pereira, H. (2008). Extractives composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, 62, 344-351.
Evans, P. D. (2009). Review of the weathering and photostability of modified wood. Wood Material Science and Engineering, 4(1-2), 2-13. doi:10.1080/17480270903249391
Gambato, G., Salvador, M., Ely, M. R., Souza, K. C. B. & Angeli, V. W. (2014). Hydroalcoholic extract of Eucalyptus camaldulensis as active phytochemical in developing toothpastes. Revista Brasileira de Farmácia, 95 (1): 580 – 594.
Gröcer, D. & Floss, H. G. (1998). Biochemistry of ergot alkaloids—achievements and challenges. In G. A. Cordell (Ed.), The alkaloids: chemistry and biology (pp. 171-218). Academic Press.
Hakkou, M., Pétrissans, M., Zoulalian, A. & Gérardin, P. (2005). Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer degradation and stability, 89(1), 1-5.
Hoseinzadeh, F., Zabihzaseh, S. M. & Dastoorian, F. (2019). Creep behavior of heat treated beech wood and the relation to its chemical structure. Construction and Building Materials, 226, 220-226. http://dx.doi.org/10.1016/j.conbuildmat.2019.07.181.
Hung, K. C. & Wu, J. H. (2010). Mechanical and interfacial properties of plastic composite panels made from esterified bamboo particles. Journal of wood science, 56(3), 216-221.
Kabera, J. N., Semana, E., Mussa, A. R. & He, X. (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. The Journal of Pharmacy and Pharmacology, 2, 377-392.
Kampe, A. & Magel, E. (2013). New insights into heartwood and heartwood formation. In: Fromm, J. (Ed.), Cellular Aspects of Wood Formation (pp. 71-95). Springer-Verlag.
Katerere, D. R., Gray, A. I., Nash, R. J. & Waigh, R. D. (2003). Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry, 63(1), 81–88. doi:10.1016/s0031-9422(02)00726-4.
Kirker, G. T., Blodgett, A. B., Arango, R. A., Lebow, P. K. & Clausen, C. A. (2013). The role extractives in naturally durable wood species. International Biodeterioration & Biodegradation, 82, 53-58. http://dx.doi.org/10.1016/j.ibiod.2013.03.007.
Klock, U., Muñiz, G. D., Hernandez, J. A. & Andrade, A. D. (2005). Química da madeira. UFPR.
Kuroda, K., Fujiwara, T., Hashida, K., Imai, T., Kushi, M., Saito, K. & Fukushima, K. (2014). The accumulation pattern of ferruginol in the heartwood-forming Cryptomeria japonica xylem as determined by time-of-flight secondary ion mass spectrometry and quantity analysis. Annals of Botany, 113, 1029-1036.
Lobo, A. C. P. (2014). Prospecção Fitoquímica e Atividades Biológicas de Folhas, Caule, Cascas do Tronco e do Óleo Essencial de Eucalyptus elata, Myrtaceae. [Masters dissertation, Federal University of Paraná]. DSpace Repository. https://acervodigital.ufpr.br/handle/1884/36146
Malinowski, L. R. L. (2010). Morfoanatomia, Fitoquímica e atividades biológicas de folhas jovens de Eucalyptus globulus Labill. subespécie bicostata (maiden et al.) JB Kirkpat., Myrtaceae. [Masters dissertation, Federal University of Paraná]. DSpace Repository. https://acervodigital.ufpr.br/handle/1884/23445
Matos, F. D. A. (1997). Introdução à fitoquímica experimental. Edições UFC.
Nascimento, M. S., Santana, A. L. B. D., Maranhão, C. A., Oliveira, L. S. & Bieber, L. (2013). Phenolic extractives and natural resistance of wood. In R. Chamy & F. Rosenkranz (Eds.), Biodegradation - Life of Science (pp. 349-370). Intech Open. http://dx.doi.org/10.5772/56358
Negi, J. S., Bisht, V. K., Singh, P., Rawat, M. S. M. & Joshi, G. P. (2013). Naturally occurring xanthones: chemistry and biology. Journal of Applied Chemistry, 2013(1), 1-9.
Nuopponen, M., Vuorinen, T., Jämsä, S. & Viitaniemi, P. (2003). Efeitos de um tratamento térmico no comportamento de extrativos em madeira macia estudados por métodos espectroscópicos FTIR. Wood Science and Technology, 37 (2), 109-115.
Pierre, F., Perré, G. A., Brito, J. O. & Perré, P. (2011). Influence of torrefaction on some chemical and energy properties of maritime pine and pedunculate oak. BioResources, 6(2), 1204-1218.
Poncsak, S., Kocaefe, D., Simard, F. & Pichette, A. (2009). Evolution of extractive composition during thermal treatment of Jack pine. Journal of wood chemistry and technology, 29(3), 251-264.
Poncsak, S., Kocaefe, D. & Younsi, R. (2011). Improvement of the heat treatment of Jack pine (Pinus banksiana) using ThermoWood technology. European Journal of Wood and Wood Products, 69(2), 281-286.
Robbers, J. E., Speedie, M. K. & Tyler, V. E. (1997). Farmacognosia e farmacobiotecnologia. São Paulo: Premier.
Rodrigues, R. R. (1995). A sucessão florestal. Ecologia e preservação de uma floresta tropical urbana: Reserva de Santa Genebra. Campinas: UNICAMP.
Sandberg, D., Kutnar, A. & Mantanis, G. (2017). Wood modification technologies-a review. iForest-Biogeosciences and Forestry, 10(6), 895.
Santos, S. A. O., Vilela, C., Domingues, R. M. A., Oliveira, C. S. D., Villaverde, J. J., Freire, C. S. R., Neto, C. P. & Silvestre, A. J. D. (2017). Secondary metabolites from Eucalyptus grandis wood cultivated in Portugal, Brazil and South Africa. Industrial Crops and Products, 95, 357-364. doi:10.1016/j.indcrop.2016.10.044
Sharma, K. P. (2019). Tannin degradation by phytopathogen's tannase: A Plant's defense perspective. Biocatalysis and Agricultural Biotechnology, 21, 101342. doi:10.1016/j.bcab.2019.101342
Shirmohammadli, Y., Efhamisisi, D. & Pizzi, A. (2018). Tannins as a sustainable raw material for green chemistry: A review. Industrial Crops and Products, 126, 316-332. doi:10.1016/j.indcrop.2018.10.034
Silva, M. R. D. (2012). Efeito do tratamento térmico nas propriedades químicas, físicas e mecânicas em elementos estruturais de Eucalipto citriodora e Pinus taeda [Doctoral thesis, São Paulo University]. Digital Library USP. https://teses.usp.br/teses/disponiveis/88/88131/tde-18012013-093404/en.php
Simões, C. M. O. (2001). Farmacognosia: da planta ao medicamento. Florianópolis: UFSC.
Singh, T. & Singh, A. P. (2012). A review on natural products as wood protectant. Wood Science and Technology, 46(5), 851-870. doi:10.1007/s00226-011-0448-5
Sung, J., Suh, J. H. & Wang, Y. (2019). Effects of heat treatment of mandarin peel on flavonoid profiles and lipid accumulation in 3T3-L1 adipocytes. Journal of food and drug analysis, 27(3), 729-735. doi:10.1016/j.jfda.2019.05.002
TAPPI T 264 cm-97. Preparation of wood for chemical analysis. Atlanta: Tappi Press, 1997.
Taylor, A. M.; Gartner, B. L. & Morrell, J. J. (2002). Heartwood formation and natural durability-a review. Wood and Fiber Science, 4, 587-611.
Thilakarathna, S. H. & Rupasinghe, H. P. (2013). Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 5(9), 3367-3387.
Tuominen, A. (2013). Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies. Phytochemistry, 95, 408-420.
Wu, J. H. Hsieh, T. Y., Lin, H. Y., Shiau, I. L. & Chang, S. T. (2004). Properties of wood plasticization with octanoyl chloride in a solvent-free system. Wood Science and Technology, 37(5), 363-372.
Yadavalli, R., Peasari, J. R., Mamindla, P., Mounika, S. & Ganugapati, J. (2018). Phytochemical screening and in silico studies of flavonoids from Chlorella pyrenoidosa. Informatics in Medicine Unlocked, 10, 89-99.
Yang, C. N., Hung, K. C., Wu, T. L., Yang, T. C., Chen, Y. L. & Wu, J. H. (2014). Comparisons and characteristics of slicewood acetylation with acetic anhydride by liquid phase, microwave, and vapor phase reactions. BioResources, 9(4), 6463-6475.
Zanuncio, A. J. V., Motta, J. P., Silveira, T. A., Farias, E. D. S. & Trugilho, P. F. (2014). Alterações físicas e colorimétricas em madeira de Eucalyptus grandis após tratamento térmico. BioResources, 9(1), 293-302.
Zhu, Y., Wang, W. & Cao, J. (2014). Improvement of hydrophobicity and dimensional stability of thermally modified southern pine wood pretreated with oleic acid. BioResources, 9(2), 2431-2445.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Ana Cristina Almeida dos Santos; Natália Dias de Souza; Jessica Grama Mesquita; Alfredo José dos Santos Junior; Danielle Affonso Sampaio; Ana Carolina Lindolfo de Oliveira; Gabriela Fontes Mayrinck Cupertino; Ananias Francisco Dias Júnior
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.