Síntesis y caracterización de nanopartículas de hidroxiapatita no estequiométricas utilizando almidones sin modificar y modificados

Autores/as

DOI:

https://doi.org/10.33448/rsd-v9i12.10996

Palabras clave:

Nanopolvos; Precipitación química; Hidroxiapatita rica en cálcio; Óxido de cálcio.

Resumen

La hidroxiapatita (HAp) no estequiométrica presenta una fase adicional en su estructura debido al exceso de calcio o fósforo, que puede influir en las propiedades mecánicas del material, como em su bioactividad y biodegradabilidad. Aunque la HAp estequiométrica, con un valor de relación calcio/fósforo (Ca/P) de 1,67 se ha investigado ampliamente, solo unos pocos estudios han informado síntesis de HAp con una relación de Ca/P más alta que o valor estequiométrico. En este trabajo, nanopartículas de HAp no estequiométricas fueron sintetizadas utilizando el método de precipitación química seguido de un protocolo de calcinación. Para un mejor control del proceso por precipitación química, almidón, un aditivo natural, fue agregado al processo. Se seleccionaron tres tipos de almidón para ser comparados: almidón no iónico (NS), almidón soluble (SS) y almidón catiónico (CS). La espectroscopia infrarroja y el análisis químico confirmaron el perfil no estequiométrico de la HAp sintetizada, con una relación Ca/P de 1,98. Los resultados de difracción de rayos X (DRX) mostraron que se obtuvieron fases cristalinas de HAp y óxido de calcio (CaO) y no se detectó almidón residual. Los refinamientos de Rietveld confirmaron que, para los tres tipos de almidón, el contenido de HAp cristalina fue superior al 96,5% y el volumen de la celda unitaria no se vio afectado. La microscopía electrónica de barrido (MEB) mostró aglomeración de partículas. Los resultados del análisis de seguimiento de nanopartículas (NTA) demostraron que el uso de SS produjo las partículas más pequeñas (aproximadamente 60 nm).

Citas

Araújo, M. N. P., Vieira, W. E. da S., Carvalho, L. P. de, Melo, H. D. F. de, Souza, T. C. de, & Berenguer, R. A. (2020). Obtenção e caracterização de hidroxiapatita obtida por síntese hidrotermal e caracterização. Research, Society and Development, 9(11), e535911100247–e535911100247.

Bengtsson, Å., Shchukarev, A., Persson, P., & Sjöberg, S. (2009). A solubility and surface complexation study of a non-stoichiometric hydroxyapatite. Geochimica et Cosmochimica Acta, 73(2), 257–267.

Bonel, G., Heughebaert, J.-C., Heughebaert, M., Lacout, J. L., & Lebugle, A. (1988). Apatitic Calcium Orthophosphates and Related Compounds for Biomaterials Preparation. Annals of the New York Academy of Sciences, 523(1 Bioceramics), 115–130.

Brown, P. W., Hocker, N., & Hoyle, S. (1991). Variations in Solution Chemistry During the Low-Temperature Formation of Hydroxyapatite. Journal of the American Ceramic Society, 74(8), 1848–1854.

Fowler, B. O. (1974). Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorganic Chemistry, 13(1), 194–207.

Gomes, F. D. C., Amorim, J. D. P. de, Silva, G. S. da, Souza, K. C. de, Pinto, A. F., Santos, B. S., & Costa, A. F. de S. (2020). Preparation and Characterization of Hydroxyapatite by the precipitation method and heat treatment. Research, Society and Development, 9(6), e172963549–e172963549.

Greish, Y. E. (2011). Phase evolution during the low temperature formation of stoichiometric hydroxyapatite-gypsum composites. Ceramics International, 37(3), 715–723.

Ishikawa, K., Ducheyne, P., & Radin, S. (1993). Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. Journal of Materials Science: Materials in Medicine, 4(2), 165–168.

Jane, J. (2015). Starch Properties, Modifications, and Applications. Journal of Macromolecular Science, Part A, 52(12), ebi-ebi.

Kakiage, M., Iwase, K., & Kobayashi, H. (2015). Effect of citric acid addition on disaggregation of crystalline hydroxyapatite nanoparticles under calcium-rich conditions. Materials Letters, 156, 39–41.

Kaur, L., & Singh, J. (2016). Starch: Modified Starches. In Encyclopedia of Food and Health (pp. 152–159). Elsevier.

Kim, S., Ryu, H.-S., Shin, H., Jung, H. S., & Hong, K. S. (2005). In situ observation of hydroxyapatite nanocrystal formation from amorphous calcium phosphate in calcium-rich solutions. Materials Chemistry and Physics, 91(2–3), 500–506.

Lima, T. A. R. M., Ilavsky, J., Hammons, J., Sarmento, V. H. V., Rey, J. F. Q., & Valerio, M. E. G. (2017). Synthesis and synchrotron characterisation of novel dual-template of hydroxyapatite scaffolds with controlled size porous distribution. Materials Letters, 190, 107–110.

Liu, H., Guan, Y., Wei, D., Gao, C., Yang, H., & Yang, L. (2016). Reinforcement of injectable calcium phosphate cement by gelatinized starches. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(3), 615–625.

Masina, N., Choonara, Y. E., Kumar, P., Toit, L. C. du, Govender, M., Indermun, S., & Pillay, V. (2017). A review of the chemical modification techniques of starch. Carbohydrate Polymers, 157, 1226–1236.

Mastalska-Poplawska, J., Sikora, M., Izak, P., & Goral, Z. (2019). Applications of starch and its derivatives in bioceramics. JOURNAL OF BIOMATERIALS APPLICATIONS, 34(1), 12–24.

Meskinfam, M., M. A. S|Jazdarreh,H|Zare,K. (2011). Biocompatibility evaluation of nano hydroxyapatite-starch biocomposites. Journal of Biomedical Nanotechnology, 7(3), 455–459.

Miculescu, F., Maidaniuc, A., Voicu, S. I., Thakur, V. K., Stan, G. E., & Ciocan, L. T. (2017). Progress in Hydroxyapatite–Starch Based Sustainable Biomaterials for Biomedical Bone Substitution Applications. ACS Sustainable Chemistry & Engineering, 5(10), 8491–8512.

Motta, J. F. G., de Souza, A. R., Gonçalves, S. M., Madella, D. K. S. F., de Carvalho, C. W. P., Vitorazi, L., & de Melo, N. R. (2020). Development of active films based on modified starches incorporating the antimicrobial agent lauroyl arginate (LAE) for the food industry. Food and Bioprocess Technology.

Nawaz, H., Waheed, R., Nawaz, M., & Shahwar, D. (2020). Physical and Chemical Modifications in Starch Structure and Reactivity. In M. Emeje (Ed.), Chemical Properties of Starch. IntechOpen.

Okada, M., & Furuzono, T. (2007). Nano-Sized Ceramic Particles of Hydroxyapatite Calcined with an Anti-Sintering Agent. Journal of Nanoscience and Nanotechnology, 7(3), 848–851.

Omori, Y., Okada, M., Takeda, S., & Matsumoto, N. (2014). Fabrication of dispersible calcium phosphate nanocrystals via a modified Pechini method under non-stoichiometric conditions. Materials Science and Engineering: C, 42, 562–568.

Ramesh, S., Tan, C. Y., Hamdi, M., Sopyan, I., & Teng, W. D. (2007). The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics. 64233A.

Ravaglioli, A., & Krajewski, A. (1992). Bioceramics. Springer Netherlands.

Raynaud, S., Champion, E., Bernache-Assollant, D., & Thomas, P. (2002). Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials, 23(4), 1065–1072.

Rey, C., Combes, C., Drouet, C., Grossin, D., Bertrand, G., & Soulié, J. (2017). 1.11 Bioactive Calcium Phosphate Compounds: Physical Chemistry ☆. In Comprehensive Biomaterials II (pp. 244–290).

Rodríguez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1–2), 55–69.

Royer, A., Viguie, J. C., Heughebaert, M., & Heughebaert, J. C. (1993). Stoichiometry of hydroxyapatite: Influence on the flexural strength. Journal of Materials Science: Materials in Medicine, 4(1), 76–82.

Sadat-Shojai, M., Khorasani, M.-T., Dinpanah-Khoshdargi, E., & Jamshidi, A. (2013). Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia, 9(8), 7591–7621.

Sadjadi, M. S., Meskinfam, M., Sadeghi, B., Jazdarreh, H., & Zare, K. (2010). In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix. Materials Chemistry and Physics, 124(1), 217–222.

Small, J. C. (1919). A method for the preparation of soluble starch. Journal of the American Chemical Society, 41(1), 113–120.

Wang, H., Lee, J.-K., Moursi, A., & Lannutti, J. J. (2003). Ca/P ratio effects on the degradation of hydroxyapatitein vitro. Journal of Biomedical Materials Research, 67A(2), 599–608.

Yang, L., Ning, X., Bai, Y., & Jia, W. (2013). A scalable synthesis of non-agglomerated and low-aspect ratio hydroxyapatite nanocrystals using gelatinized starch matrix. Materials Letters, 113, 142–145.

Descargas

Publicado

25/12/2020

Cómo citar

PEREA, G. N. R. .; SILVA, M. B. .; FREITAS, B. X.; SANTOS, Ésoly M. B. dos .; LOPES, L. C. R. .; VITORAZI, L.; SANTOS, C. dos . Síntesis y caracterización de nanopartículas de hidroxiapatita no estequiométricas utilizando almidones sin modificar y modificados. Research, Society and Development, [S. l.], v. 9, n. 12, p. e30791210996, 2020. DOI: 10.33448/rsd-v9i12.10996. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10996. Acesso em: 4 jul. 2024.

Número

Sección

Ingenierías