Estudio fitotóxico y enzimático de Philodendron meridionale en semillas de Lactuca sativa L.

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i1.11336

Palabras clave:

Araceae; Actividad enzimática; Alelopatía; Compuestos fenólicos; Saponinas.

Resumen

En un esfuerzo por identificar nuevos bioplaguicidas, el presente estudio tuvo como objetivo evaluar los efectos de los extractos cetónicos y etanólicos de tallo y hoja de Philodendron meridionale (Buturi & Sakur) (SKE, SEE, LKE y LEE, respectivamente) sobre la germinación, el crecimiento y la raíz. respiración y actividades enzimáticas de las semillas de Lactuca sativa L., y medir las saponinas, fenólicos y flavonoides asociados que pueden poseer actividades herbicidas, farmacéuticas o pesticidas. Los extractos se obtuvieron utilizando un aparato Soxhlet modificado y se ensayaron extractos metanólicos de 0,1, 0,25, 0,5, 0,75 y 1,0 mg.mL-1, con agua y metanol como control. Se determinó la presencia de saponinas y la concentración de compuestos fenólicos. La actividad alelopática se evaluó en pruebas de germinación, crecimiento, respiración celular y actividad enzimática. La presencia de saponinas y la concentración de compuestos fenólicos equivalentes a 225,12 para LKE, 240,45 para LEE, 193,28 para SKE y 265,14 para SEE (mg.g-1.ácido gálico), y flavonoides 52,74 para LKE, 54,31 para LEE, 72,74 para SKE y 67,21 para SEE (mg.g-1.quercetina). La alelopatía de los extractos de P. meridionale contra L. sativa se confirmó através de los efectos negativos sobre la germinación de semillas de L. sativa, el crecimiento y morfología de radicales, la masa seca y las concentraciones de α-amilasa (EC 3.2.1.1), ascorbato peroxidasa (EC 1.11.1.11), catalasa (EC 1.11.1.6) y polifenol oxidasa (EC 1.10.3.1). Es probable que la acción alelopática de los extractos de P. meridionale estuviera relacionada con sus efectos sobre la permeabilidad de la membrana y el estrés oxidativo de las semillas de L. sativa tratadas. Los extractos de P. meridionale contenían saponinas, cristales de oxalato de calcio y flavonoides, incluidos compuestos fenólicos, que son aleloquímicos conocidos con actividad herbicida.

Biografía del autor/a

Daniela Gaspardo Folquitto, Federal University of Paraná

Farmacia

Vanessa Barbosa Bobek, Federal University of Paraná

Farmacia

Amanda Migliorini Urban, Federal University of Paraná

Farmacia

Fernando Cesar Martins Betim, Federal University of Paraná

Pharmacy

Letícia Freire Oliveira, Federal University of Paraná

Pharmacy

Camila Bugnoto Pereira, Federal University of Paraná

Pharmacy

Francis José Zortéa Merino, Federal University of Paraná

Pharmacy

Josiane de Fátima Gaspari Dias, Federal University of Paraná

Pharmacy

Rosi Zanoni da Silva, State University of Ponta Grossa

Pharmacy

Paulo Vitor Farago, State University of Ponta Grossa

Pharmacy

Marilis Dalarmi Miguel, Federal University of Paraná

Pharmacy

Obdulio Gomes Miguel, Federal University of Paraná

Pharmacy

Citas

Aebi, H. (1984). Catalase in vitro. Methods in Enzimology. 105, 121–126.

Alliance, D., Santos, C. B. R., Barbosa, L. M. C., Gomes, J. S., Lobato, C. C., Viana, J. C., Ramos, R., Ferreira, R. M. A. & Souto, R. N. P. (2017). Chemical study, predictions “In Silico”and larvicide activity of the essential oil of root Philodendron deflexum Poepp. J Comput Theor Nanosci. 14(7), p3330-3337.

Almeida, G. D., Zucoloto, M., Zetun, M. C., Coelho, I. & Sobreir, F. M.(2008). Oxidative stress in vegetable cells mediated by allelochemicals. Revista Facultad Nacional de Agronomía Medellín. 61, 4237–4247.

Amako, K., Chen, G. & Asada, K. (1994). Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant and Cell Physiology. 35, 497–504.

Anderson, M. D., Prasad, T. K. & Stewart, C. R. (1995). Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotylus of maize seedlings. Plant Physiology. 109, 1247–1257.

AOAC - Association of Official Agricultural Chemists. (1965). Official methods of analysis., (10th ed.), Editorial Board, Washington.

Aumonde, T. Z., Martinazzo, E. G., Borella, J., Pedó, T., Amarant,e L., Villela, F. A. & Moraes, D. M. (2012). Physiological alterations in seeds and the antioxidative metabolism of lettuce seedlings exposed to the activity of leaf extracts of Zantedeschia aethiopica Spreng. Interciência. 37, 845–851.

Aumonde, T. Z., Martinazzo, E. G., Borella, J., Pedó, T., Amarante, L., Villela, F. A. & Moraes, D. M. (2013). Physiological responses of seeds and seedlings submitted to the extract of Philodendron bipinnatifidum. Semina–Ciências Agrárias. 34, 3181–3192.

Bhatt, I. & Tripathi, B. N. (2011). Plant peroxiredoxins: catalytic mechanisms, functional significance and future perspectives. Biotechnology Advances. 29, 850–859.

Bogatek, R., & Gniazdowska, A. (2007). ROS and phytohormones in plant-plant allelopathic interaction. Plant Signal Behav. 2(4), 317-318.

Borella, J. & Pastorini, L. H. (2009). The allelopathic influence of Phytolacca dióica L. in the germination and initial growth of tomatoes and picão-preto. Revista Biotemas. 22, 67–75.

Brasil. (2009). Ministry of Agriculture, Livestock and Food Supply. Rules for the analysis of seeds. Mapa/ACS, Brasília.

Buturi, C. V., Temponi, L. G. & Sakuragui, C. M. (2014). A new species of Philodendron Schott (Araceae) in Paraná, Brazil. Phytotaxa. 174, 144-148.

Campos, A. D., Ferreira, A. G., Hampe, M. M. V., Antunes, I. F., Brancão, N., Silveira, E. P., Osório, V. A., & Augustin, E. (2004). Peroxidase and polyphenol oxidase activity in the resistance of beans to anthracnose. Revista Agropecuária Brasileira. 19, 637–643.

Carmo, F. M.S., Borges, E. E. L. & Takaki, M. (2007). Alelopatia de extratos aquosos de canela-sassafrás (Ocotea odorifera (Vell.) Rohwer). Acta Bot Bras. 21, 697- 705.

Carvalho, J. L. S., Cunico, M. M., Dias, J. F. G., Miguel, M. M. & Miguel, O. G. (2009).

Termoestabilidade de processos extrativos de Nasturtium officinale R. Br., brassicaceae por sistema Soxhlet modificado. Quím. Nova. 32(4), 1031-1035.

Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis.10, 178–182.

Chung, I. M., Ahn, L. K. & Yun, S. J. (2001). Assesment of allelopathic potential of barnyard grass (Echinochloa crus-galli) on rice (Oriza sativa L.) cultivars. Crop Protec. 20, 921-928.

Cruz-Ortega, R., Anaya, A. L., Hernández-Bautista, B. E. & Laguna-Hernández, G. (1998). Effects of allelochemical stress produced by Sicyos deppei on seedling root ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia. J Chem Ecol. 24(12), 2039-2057.

Duangmal, K., & Apenten, R. K. O. (1999). A comparative study of polyphenoloxidases from taro (Colocasia esculenta) and potato (Solanun tuberosum var. romano). Food Chem. 64, 351-359.

Duke, S. O. & Oliva, A. (2005). Mode of Action of Phytotoxic Terpenoids. In: Macias, F. A., Galindo, J. C. G. & Molinillo, J. M. G. Allelopathy: chemistry and mode of action of allelochemicals. Taylor & Francis e-Library, 374p.

Einhellig, F. A. (1994). Mechanism of action of allelochemicals in allelopathy. Allelopathy. 9, 96-116. https://doi.org/10.1021/bk-1995- 0582.ch007

Einhellig, F. A. (2005). Mode of Allelochemical Action of Phenolic Compounds. In: Macias, F. A., Galindo, J. C. G. & Molinillo, J. M. G. (Eds.). Allelopathy: chemistry and mode of action of allelochemicals. Taylor & Francis e-Library, 392p.

Elakovich, S. D. (1999). Biossays applied to allelopathic herbaceous vascular hydrophytes. In: Inderjit, Dakshini, K. M. M. & Foy, C. L. (eds) Principles and practices in plant ecology. CRC Press. Boca Raton: 45–56.

Ferreira, A. G. & Aquila, M. E. A. (2000). Allelopathy: an emerging area of ecophysiology. Revista Brasileira de Fisiologia Vegetal. 12, 175–204.

Gatto, L. J., Fabri, N. T., Souza, A. M., Fonseca, N. S. T., Furusho, A. S., Miguel, O. G., Dias, J. F. G., Zanin, S. M. W. & Miguel, M. D. (2020). Chemical composition, phytotoxic potential, biological activities and antioxidant properties of Myrcia hatschbachii D. Legrand essential oil. Brazilian Journal of Pharmaceutical Sciences, 56, e18402.

Ghareeb, M. A., Refahy, L. A., Saad, A. M., El-Shazely, M. A., Mohamed, A. S. & Osman, N. S. (2015). Cytotoxic screening of three egyptian plants using brine shrimp lethality test. Int J Pharm Pharm Sci. 7(9), 507-509.

Hassanein, H. I., El-Ahwany, E. G., Salah, F. M., Hammam, O. A., Refai, L. & Hamed, M. (2011). Extracts of five medicinal herbs induced cytotoxicity in both hepatoma and myeloma cell lines. J Cancer Sci Ther. 3(10), 239-243.

Hoffmann, C. E. F., Neves, L. A. S., Bastos, C. F. & Wallau, G. L. (2007). Allelopathic activity of Nerium oleander L. and Dieffenbachia picta Schott in seeds of Lactuca sativa L. and Bidens pilosa L. Revista de Ciências Agroveterinária. 6,11–21.

Kirkby, E. A. & Römheld, V. (2007). Micronutrientes na fisiologia de plantas: funções, absorção e mobilidade. Encart Inf Agr. 118, 1-24.

Krause, M. S., Duarte, A. F. S., Merino, F. J. Z., Paula, C. S., Miguel, M. D., & Miguel, O. G. (2016). Phytotoxic Analysis of Extract of Leaves of Solanum megalochiton Mart. Solanaceae on Lactuca sativa L. and Allium cepa L. International Journal of Sciences. 5(11), 36-42.

Lucchesi, A. A., & Oliveira, R. F. (1988). Inhibitory effects in germination, induced by the cabbage extract (Brassica oleracea L. var. acephala DC.). Annals of the Higher School of Agriculture Luiz de Queiroz. 45, 167–178.

Macias, F. A., Castellano, D., & Molinillo, J. M. G. (2000). Search for a standart phytotoxic bioassay for allelochemicals. Selection of standard target species. J Agric Food Chem., 48(6), 2512-2521.

Maraschin-Silva, F., & Aquila M. E. A. (2006). Allelopathic potential of native species in the germination and early stages of growth of Lactuca sativa L. (Asteraceae). Acta Botânica Brasileira. 20, 61–69.

Marenco, R. A., & Lopes, N. F. (2005). Plant physiology: photosynthesis, respiration, hydric relations and mineral nutrition. Boca Raton: UFV, Viçosa.

Merino, F. J. Z., Ribas, D. F., Silva, C. B., Duarte, A. F. S., Paula, C. S., Oliveira, M., Dias, J. F. G., Miguel, M. D. & Miguel, O. G. (2018). A study of the phytotoxic effects of the aerial parts of Senecio westermanii Dusén (Asteraceae) on Lactuca sativa L. and Allium cepa L. seeds. Brazilian Journal of Pharmaceutical Sciences, 54, 1-10.

Moura, V. M., Sousa, L. F., Santos, M. C., Raposo, J. D. A., Lima, A. E., Oliveira, R. B., Silva, M. N. & Mourão, R. H. V. (2015). Plants used to treat snakebites in Santarém, western Pará, Brazil: An assessment of their effectiveness in inhibiting hemorrhagic activity induced by Bothrops jararaca venom. J. Ethnopharmacol. 161, 224-232.

Munns R., & Tester M. (2008). Mechanism of salinity tolerance. Annual Review of Plant Biology. 59, 651–681.

Pino, O., Sánchez, Y. & Rojas, M. M. (2013). Plant secondary metabolites as an alternative in pest management. I: Background, research approaches and trends. Rev. Protección Veg. 28(2), 81-94.

Putter, J. (1974). Peroxidases. In: Bergmeyer, H. U. (Ed.) Methods of enzymatic analysis, 2nd Edn. Verlag Chemie, Weinheim, Germany. 685–690.

Reginatto, F. H. (2017). Introdução à análise fitoquímica. In: Simôes, C. M. O., Schenkel, E. P., Gosmann, G., Mello, J. C. P. D., Mentz, L. A. & Petrovick, P. R. Farmacognosia da Planta ao Medicamento. Porto Alegre: Artmed, 69-83.

Reigosa, M. J., Sánchez-Moreiras, A., & González, L. (1999). An ecophysiological approach in allelopathy. Critical Reviews in Plant Sciences. 18, 577–608.

Reigosa, M., Gomes, A. S., Ferreira, A. G. & Borghetti, F. (2013). Allelopathic research in Brazil. Acta Botanica Brasilica, 27(4), 629-646.

Rezende, C. P., Pinto, J. C., Evangelista, A. R. & Santos, E. I. P. A. (2003). Alelopatia e suas interações na formação e manejo de pastagens. Bol Agr, Universidade Federal de Lavras, MG. 54, 1-55.

Rice, E. L. (1984). Allelopathy. (2nd ed.), Orlando: Academic, 422p.

Santiago, J. A., Cardoso, M. G., Figueiredo, A. C. S., Moraes, J. C., Assis, F. A., Teixeira, M. L., Santiago, W. D., Sales, T. A., Camargo, K. C., & Nelson, D. L. (2014). Chemical characterization and application of the essential oils from Chenopodium ambrosioides and Philodendron bipinnatifidum in the control of Diabrotica speciosa (Coleoptera: Chrysomelidae). American Journal of Plant Sciences. 5, 3994-4002.

Silva, J. N., Silva, M. A. D., Rocha, A. K. P., Alves, R. M., Silva, E. F., Leal, L. S. G. & Moura, D. P. (2020). Allelopathy of Piptadenia moniliformis and Capparis hastata on the vigor of Mimosa hostilis seeds. Research, Society and Development, . 9(8), e472985527.

Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture. 28, 49–55.

Sousa, J. D., Leite, T. R., Linhares, K. V., Sousa, J. D., Bezerra, J. W. A., Santos, M. A. F., Torquatto, H. I. S., Boligon, A. A., Bezerra, J. S., Campos, N. B., & Silva, M. A. P. (2020). Chromatographic profile and allelopathic potential of the essential oil of Acritopappus confertus (Gardner) R. M. King & H . Rob. (Asteraceae). Research, Society and Development. 9(12), e1991210450.

Souza-Filho A. P. S., Rodrigues, L. R. A. & Rodrigues, T. J. D. (1997). Effects of the allelopathic potential of three leguminous plants on three invasive species of grasslands. Revista brasileira de agricultura. 32, 165–170.

Steponkus, P. L. & Lanphear, F.O. (1967). Refinement of the triphenyl tetrazolium chloride method of determining cold injury. J Plant Physiol. 42, 1423-1426.

Swiech, J. N. D., Bobek, V. B., Folquitto, D. G., Silva, R. Z., Budel, J. M., Farago, P. V., Miguel, M. D. & Miguel, O. G. (2016). Morpho-anatomy of the vegetative organs of Philodendron meridionale Buturi & Sakur. Latin American Journal of Pharmacy. 10, 2142–2148.

Torquato, I. H. S., Costa, N. C., Pereira, K. S., Campos, N. B., Oliveira, A. A., Generino, M. E. M., Bezerra, J. W. A., Santos, M. A. F., Sousa, J. D., Boligon, A. A., & Silva, M. A. P. (2020). Composição polifenólica e potencial alelopático de Senna cearensis Afr. Fern. (Fabaceae). Research, Society and Development. 9(8), e577986207.

Viecelli, C. A., Stangarlin, J. R., Kuhn, O. J., & Schwan-Estrada, K. R. F. (2010). Induction of resistance in beans to angular leaf spots by extracts of mycelium of Pycnoporus sanguineus. Summa Phytopatholica. 36, 73–80.

Zimdahl, R. L. (2018). Chapter 9 – Allelopathy. Fundamentals of Weed Science (Fifth Edition), 253-270. https://doi.org/10.1016/B978-0-12-811143-7.00009-3.

Descargas

Publicado

03/01/2021

Cómo citar

SWIECH, J. N. D.; FOLQUITTO, D. G.; BOBEK, V. B.; URBAN, A. M. .; BETIM, F. C. M.; OLIVEIRA, L. F.; PEREIRA, C. B.; MERINO, F. J. Z.; DIAS, J. de F. G. .; SILVA, R. Z. da; FARAGO, P. V. .; MIGUEL, M. D.; MIGUEL, O. G. Estudio fitotóxico y enzimático de Philodendron meridionale en semillas de Lactuca sativa L. Research, Society and Development, [S. l.], v. 10, n. 1, p. e5610111336, 2021. DOI: 10.33448/rsd-v10i1.11336. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11336. Acesso em: 25 nov. 2024.

Número

Sección

Ciencias Agrarias y Biológicas