Estado nutricional y composición corporal en personas con sobrepeso u obesidad utilizando indicadores habituales e inusuales
DOI:
https://doi.org/10.33448/rsd-v10i1.11339Palabras clave:
Composición corporal; Estado nutricional; Riesgo cardiometabólico; Evaluación.Resumen
Objetivo: El objetivo de este estudio es explorar más el estado nutricional en adultos según los componentes habituales y no habituales de la composición corporal. Métodos: se trata de un estudio descriptivo con una muestra de 274 adultos brasileños del sur del país. Se evaluó la composición corporal de los participantes con un bioimpedanciómetro octapolar (InBody 520 - Biospace) y se evaluaron los parámetros antropométricos según el estándar de la OMS. Los datos se analizaron mediante la estadística descriptiva e inferencial con el software SPSS versión 22.0. Resultados: Los participantes fueron agrupados por estado nutricional y sexo. Hubo diferencias estadísticas entre los grupos (tanto estado nutricional como sexo) en todas las variables, excepto edad y estatura. La correlación entre las variables también fue significativa, excepto para la Masa Corporal Magra y el Porcentaje de Grasa Corporal (MCM vs PGC) y para el Proporción de grasa a grasa y la Masa Corporal Magra (PGG vs MCM). Consideraciones finales: Los resultados han demostrado que los parámetros habituales y no habituales de la composición corporal están relacionados (la mayoría de ellos) y estaban más fuertemente relacionados en el grupo femenino.
Citas
Aghili, R., Malek, M., Valojerdi, A. E., Banazadeh, Z., Najafi, L., & Khamseh, M. E. (2014). Body composition in adults with newly diagnosed type 2 diabetes: Effects of metformin. Journal of Diabetes and Metabolic Disorders, 13(1). https://doi.org/10.1186/s40200-014-0088-z
Andy Field. (2009). Discovering Statistics using SPSS Statistics. SAGE Publications, 66, 822. http://www.amazon.com/Discovering-Statistics-using-IBM-SPSS/dp/1446249182
Auyeung, T. W., Lee, J. S. W., Leung, J., Kwok, T., Leung, P. C., & Woo, J. (2010). Survival in older men may benefit from being slightly overweight and centrally obese-a 5-year follow-up study in 4,000 older adults using DXA. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 65(1), 99–104. https://doi.org/10.1093/gerona/glp099
Batsis, J. A., Mackenzie, T. A., Bartels, S. J., Sahakyan, K. R., Somers, V. K., & Jimenez, F. L.-. (2016). Diagnostic Accuracy of Body Mass Index to Identify Obesity in Older Adults: NHANES 1999–2004. Int J Obes (Lond)., 40(5), 761–767. https://doi.org/10.1038/ijo.2015.243.Diagnostic
Beals, J. W., Sukiennik, R. A., Nallabelli, J., Emmons, R. S., Van Vliet, S., Young, J. R., Ulanov, A. V., Li, Z., Paluska, S. A., De Lisio, M., & Burd, N. A. (2016). Anabolic sensitivity of postprandial muscle protein synthesis to the ingestion of a protein-dense food is reduced in overweight and obese young adults. American Journal of Clinical Nutrition, 104(4), 1014–1022. https://doi.org/10.3945/ajcn.116.130385
Cesari, M., Pahor, M., Lauretani, F., Zamboni, V., Bandinelli, S., Bernabei, R., Guralnik, J. M., & Ferrucci, L. (2009). Skeletal muscle and mortality results from the InCHIANTI study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 64(3), 377–384. https://doi.org/10.1093/gerona/gln031
Dada, R. P., Magnani Branco, B. H., Oliveira Terra, C. M. de, Brito Lazarin, S. P., Hintze, L. J., & Junior, N. N. (2018). Nutritional status and cardiometabolic risk in women: Relationship with usual and non-usual components of body composition. Journal of Physical Education (Maringa), 29(1). https://doi.org/10.4025/jphyseduc.v29i1.2935
Di Angelantonio, E., Bhupathiraju, S. N., Wormser, D., Gao, P., Kaptoge, S., de Gonzalez, A. B., Cairns, B. J., Huxley, R., Jackson, C. L., Joshy, G., Lewington, S., Manson, J. A. E., Murphy, N., Patel, A. V., Samet, J. M., Woodward, M., Zheng, W., Zhou, M., Bansal, N., … Hu, F. B. (2016). Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. The Lancet, 388(10046), 776–786. https://doi.org/10.1016/S0140-6736(16)30175-1
Diemer, F. S., Brewster, L. M., Haan, Y. C., Oehlers, G. P., van Montfrans, G. A., & Nahar-van Venrooij, L. M. W. (2019). Body composition measures and cardiovascular risk in high-risk ethnic groups. Clinical Nutrition, 38(1), 450–456. https://doi.org/10.1016/j.clnu.2017.11.012
Eisner, M. D., Blanc, P. D., Sidney, S., Yelin, E. H., Lathon, P. V., Katz, P. P., Tolstykh, I., Ackerson, L., & Iribarren, C. (2007). Body composition and functional limitation in COPD. Respiratory Research, 8. https://doi.org/10.1186/1465-9921-8-7
Flegal, K. M., Kit, B. K., Orpana, H., & Graubard, B. (2013). Association of all-cause mortality with overweight and obesity using standard body mass index categories. A systematic review and meta-analysis. British Dental Journal, 214(3), 113–113. https://doi.org/10.1038/sj.bdj.2013.131
Forbes, G. B. (2000). Body fat content influences the body composition response to nutrition and exercise. Annals of the New York Academy of Sciences, 904, 359–365. https://doi.org/10.1111/j.1749-6632.2000.tb06482.x
Guillet, C., Delcourt, I., Rance, M., Giraudet, C., Walrand, S., Bedu, M., Duche, P., & Boirie, Y. (2009). Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men. Journal of Clinical Endocrinology and Metabolism, 94(8), 3044–3050. https://doi.org/10.1210/jc.2008-2216
Hales, C. M., Carroll, M. D., Fryar, C. D., & Ogden, C. L. (2020). Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017-2018. NCHS data brief, 360, 1–8. https://www.cdc.gov/nchs/products/index.htm.
Heyward, V. (2001). ASEP methods recommendation: Body composition assessment. Journal of Exercise Physiology Online, 4(4), 1–12.
Honda, H., Qureshi, A. R., Axelsson, J., Heimburger, O., Suliman, M. E., Barany, P., Stenvinkel, P., & Lindholm, B. (2007). Obese sarcopenia in patients with end-stage renal disease is associated with inflammation and increased mortality. American Journal of Clinical Nutrition, 86(3), 633–638. https://doi.org/10.1093/ajcn/86.3.633
Kalyani, R. R., Metter, E. J., Xue, Q.-L., Egan, J. M., Chia, C. W., Studenski, S., Shaffer, N. C., Golden, S., Al-Sofiani, M., Florez, H., & Ferrucci, L. (2020). The Relationship of Lean Body Mass With Aging to the Development of Diabetes. Journal of the Endocrine Society, 4(7). https://doi.org/10.1210/jendso/bvaa043
Kivimäki, M., Kuosma, E., Ferrie, J. E., Luukkonen, R., Nyberg, S. T., Alfredsson, L., Batty, G. D., Brunner, E. J., Fransson, E., Goldberg, M., Knutsson, A., Koskenvuo, M., Nordin, M., Oksanen, T., Pentti, J., Rugulies, R., Shipley, M. J., Singh-Manoux, A., Steptoe, A., … Jokela, M. (2017). Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. The Lancet Public Health, 2(6), e277–e285. https://doi.org/10.1016/S2468-2667(17)30074-9
Lee, D. H., Keum, N. N., Hu, F. B., Orav, E. J., Rimm, E. B., Willett, W. C., & Giovannucci, E. L. (2018). Predicted lean body mass, fat mass, and all cause and cause specific mortality in men: prospective US cohort study. BMJ (Clinical research ed.), 362, k2575. https://doi.org/10.1136/bmj.k2575
Medina-Inojosa, J. R., Somers, V. K., Thomas, R. J., Jean, N., Jenkins, S. M., Gomez-Ibarra, M. A., Supervia, M., & Lopez-Jimenez, F. (2018). Association between adiposity and lean mass with long-term cardiovascular events in patients with coronary artery disease: No paradox. Journal of the American Heart Association, 7(10). https://doi.org/10.1161/JAHA.117.007505
Merli, M., Lattanzi, B., & Aprile, F. (2019). Sarcopenic obesity in fatty liver. Current Opinion in Clinical Nutrition & Metabolic Care, 22(3), 185–190. https://doi.org/10.1097/MCO.0000000000000558
Montano-Loza, A. J., Angulo, P., Meza-Junco, J., Prado, C. M. M., Sawyer, M. B., Beaumont, C., Esfandiari, N., Ma, M., & Baracos, V. E. (2016). Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. Journal of Cachexia, Sarcopenia and Muscle, 7(2), 126–135. https://doi.org/10.1002/jcsm.12039
Moon, S., Oh, C. M., Choi, M. K., Park, Y. K., Chun, S., Choi, M., Yu, J. M., & Yoo, H. J. (2017). The influence of physical activity on risk of cardiovascular disease in people who are obese but metabolically healthy. PLoS ONE, 12(9). https://doi.org/10.1371/journal.pone.0185127
Murton, A. J., Marimuthu, K., Mallinson, J. E., Selby, A. L., Smith, K., Rennie, M. J., & Greenhaff, P. L. (2015). Obesity appears to be associated with altered muscle protein synthetic and breakdown responses to increased nutrient delivery in older men, but not reduced muscle mass or contractile function. Diabetes, 64(9), 3160–3171. https://doi.org/10.2337/db15-0021
Newman, A. B., Kupelian, V., Visser, M., Simonsick, E. M., Goodpaster, B. H., Kritchevsky, S. B., Tylavsky, F. A., Rubin, S. M., & Harris, T. B. (2006). Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 61(1), 72–77. https://doi.org/10.1093/gerona/61.1.72
Padwal, R., Leslie, W. D., Lix, L. M., & Majumdar, S. R. (2016). Relationship among body fat percentage, body mass index, and all-cause mortality: A Cohort Study. Annals of Internal Medicine, 164(8), 532–541. https://doi.org/10.7326/M15-1181
Poggiogalle, E., Mendes, I., Ong, B., Prado, C. M., Mocciaro, G., Mazidi, M., Lubrano, C., Lenzi, A., Donini, L. M., & Siervo, M. (2020). Sarcopenic obesity and insulin resistance: Application of novel body composition models. Nutrition, 75–76. https://doi.org/10.1016/j.nut.2020.110765
Polyzos, S. A., & Margioris, A. N. (2018). Sarcopenic obesity. Hormones, 17(3), 321–331. https://doi.org/10.1007/s42000-018-0049-x
Rolland, Y., Gallini, A., Cristini, C., Schott, A. M., Blain, H., Beauchet, O., Cesari, M., & Lauwers-Cances, V. (2014). Body-composition predictors of mortality in women aged ≥75 y: Data from a large population-based cohort study with a 17-y follow-up. American Journal of Clinical Nutrition, 100(5), 1352–1360. https://doi.org/10.3945/ajcn.114.086728
Romero-Corral, A., Somers, V. K., Sierra-Johnson, J., Thomas, R. J., Collazo-Clavell, M. L., Korinek, J., Allison, T. G., Batsis, J. A., Sert-Kuniyoshi, F. H., & Lopez-Jimenez, F. (2008). Accuracy of body mass index in diagnosing obesity in the adult general population. International Journal of Obesity, 32(6), 959–966. https://doi.org/10.1038/ijo.2008.11
Rooy, M.-J., & Pretorius, E. (2014). Obesity, Hypertension and Hypercholesterolemia as Risk Factors for Atherosclerosis Leading to Ischemic Events. Current Medicinal Chemistry, 21(19), 2121–2129. https://doi.org/10.2174/0929867321666131227162950
Shah, M., Hurt, R. T., & Mundi, M. S. (2017). Phenotypes of Obesity: How it Impacts Management. Current Gastroenterology Reports, 19(11), 55. https://doi.org/10.1007/s11894-017-0598-1
Smeuninx, B., Mckendry, J., Wilson, D., Martin, U., & Breen, L. (2017). Age-Related Anabolic Resistance of Myofibrillar Protein Synthesis Is Exacerbated in Obese Inactive Individuals. The Journal of Clinical Endocrinology & Metabolism, 102(9), 3535–3545. https://doi.org/10.1210/jc.2017-00869
Srikanthan, P., & Horwich, T. B. (2012). The Obesity Paradox: Time for a New Look at an Old Paradigm. Revista Española de Cardiología (English Edition), 65(5), 403–404. https://doi.org/10.1016/j.rec.2011.12.012
Srikanthan, P., Horwich, T. B., & Tseng, C. H. (2016). Relation of Muscle Mass and Fat Mass to Cardiovascular Disease Mortality. American Journal of Cardiology, 117(8), 1355–1360. https://doi.org/10.1016/j.amjcard.2016.01.033
Sternfeld, B., Ngo, L., Satariano, W. A., & Tager, I. B. (2002). Associations of body composition with physical performance and self-reported functional limitation in elderly men and women. American Journal of Epidemiology, 156(2), 110–121. https://doi.org/10.1093/aje/kwf023
Thomson, J., Nelson, J., & Silverman, S. (2005). Research methods in physical activity. In H. Kinetics (Org.), Journal of sports sciences (Vol. 35, Número 5).
Toss, F., Wiklund, P., Nordström, P., & Nordström, A. (2012). Body composition and mortality risk in later life. Age and Ageing, 41(5), 677–681. https://doi.org/10.1093/ageing/afs087
Vanavanan, S., Srisawasdi, P., Rochanawutanon, M., Kumproa, N., Kruthkul, K., & Kroll, M. H. (2018). Performance of body mass index and percentage of body fat in predicting cardiometabolic risk factors in thai adults. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 11, 241–253. https://doi.org/10.2147/DMSO.S167294
Vanitallie, T. B., Yang, M. U., Heymsfield, S. B., Funk, R. C., & Boileau, R. A. (1990). Height-normalized indices of the body’s fat-free mass and fat mass: Potentially useful indicators of nutritional status. American Journal of Clinical Nutrition, 52(6), 953–959. https://doi.org/10.1093/ajcn/52.6.953
Wannamethee, S. G., & Atkins, J. L. (2015). Muscle loss and obesity: The health implications of sarcopenia and sarcopenic obesity. Proceedings of the Nutrition Society, 74(4), 405–412. https://doi.org/10.1017/S002966511500169X
WHO, W. H. O. (2015). Obesity and overweight. World Health Organization. http://www.who.int/ Q4 mediacentre/factsheets/fs311/en/
World Obesity. (2020). Obesity: missing the 2025 global targets. World Obesity Federation, 12–32. https://data.worldobesity.org/publications/?cat=2
Zalesin, K. C., Franklin, B. A., Lillystone, M. A., Shamoun, T., Krause, K. R., Chengelis, D. L., Mucci, S. J., Shaheen, K. W., & McCullough, P. A. (2010). Differential loss of fat and lean mass in the morbidly obese after bariatric surgery. Metabolic Syndrome and Related Disorders, 8(1), 15–20. https://doi.org/10.1089/met.2009.0012
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Heloá Costa Borim Christinelli; Greice Westphal; Nelson Nardo Junior; Maria Luiza Costa Borim ; Maria Antonia Ramos Costa; Carlos Alexandre Molena Fernandes
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.