Estudio de biosorción de magnesio, zinc, hierro y seleno en cultivos de alta concentración de Spirulina platensis

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i2.12154

Palabras clave:

Biofijación; Enriquecimiento; Fotobiorreactores; Spirulina platensis.

Resumen

La biosorción de minerales es una técnica que puede aportar importantes beneficios a la producción de biomasa funcional. Los resultados garantizan economía (debido la ausencia de adición de minerales en la biomasa seca), minimización de tiempos y eliminación etapas en el proceso productivo. El objetivo de este trabajo fue estudiar la incorporación de zinc, magnesio, hierro y selenio en biomasa de Spirulina platensis mediante la aplicación de Diseño Factorial Compuesto Central. Los experimentos se realizaron en invernadero vegetativo y fotobiorreactores de 10 litros, con el objetivo de lograr la máxima absorción de los minerales durante cinco días. Se observó una influencia significativa en la incorporación de magnesio (410 mg.100-1g) y zinc (34.84 mg.100-1g). También se observó en la incorporación de Fe (73,5 mg.100-1g) y selenio (1.738,81 mg.100-1g), mostrando el uso potencial de la técnica para incorporar estos minerales en la biomasa de Spirulina platensis y asegurar una amplia aplicación de esta materia prima en alimentos y suplementos.

Citas

Arai, S. (1996). Studies on Functional Foods in Japan - State of the Art. Bioscience Biotechnology Biochemistry, 60, 9-15.

Box, G. E. P. & Hunter, J. S. (1987). Multi-factor experimental designs for exploring response surfaces. Annals of mathematical statistics, 28, 195-241.

Buckley, T. N. (2019). How do stomata respond to water status? Tansley review. New Phytologist, 224, 21-36.

Chen, T., Zhen, W., Wong, Y. S., Yang, F. & Bai, Y. (2006). Accumulation of selenium in mixotrophic culture of Spirulina plantensis on glucose. Bioresource Technology, 97, 2260-2265.

Chen, T. F., Cui, X. F., Yang, F., Zheng, W. J. & Bai, Y. (2005). Culture of High Selenium-enriched Spirulina platensis with a Stepwise Selenium Addition Method and Its Effects on the Photosynthetic Pigment and Protein Contents of the Microalgae. Food Fermentation Industries, 8, 48-51.

Das, N., Vimala, R. & Karthika, P. (2008). Biosorption of Heavy Metals—An Overview. Indian Journal of Biotechnology, 7, 159-169.

De Philippis, R., Colica, G. & Mecarozzi, P. (2011). Exopolysaccharide-producing cyanobacteria in Heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Applied Microbiology and Biotechnolog, 92, 697-708.

Ellis, D. R. & Salt, D. E. (2003). Plants, selenium and human health. Current Opinion in Plant Biology, 6, 273-279.

Fox, R. D. (1996). Spirulina – Production & Potential. Aix-en-Province: Edisud, France.

Gong, R., Ding, Y., Liu, H., Chen, Q. & Liu, Z. (2005). Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere, 58, 125-130.

Grobbelaar, J. U. (2004). In: Richmond A (ed) Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Publishing Ltd, Oxford

Hopkins, W. G. & Hüner, N. P. (2009). Introduction to Plant Physiology. John Wiley, New York.

IAL - Instituto Adolfo Lutz. Ed. (2008). Métodos Físico-Químicos para Análise de Alimentos. IMESP, São Paulo.

Karkos, P. D., Leong, S. C., Karkos, C. D., Sivaji, N. & Assimakopoulos, D. A. (2008). Spirulina in clinical practice: evidence-based human applications. Evidence-based Complementary and Alternative Medicine, 2011, 1-4.

Kotrba, P.; Mackova, M. & Macek, T. (2011). Microbial Biosorption of Metals. Springer Netherlands, Dordrecht.

León, R.; Cejudo, A. G. & Fernández, E. (2007). Transgenic Microalgae as Green Cell Factories. Springer-Verlag, New York.

Li, Z. Y., Guo, S. Y. & Li, L. (2003). Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresource Technology, 89, 171-176.

Lodish, H.; Berk, A.; Zipursky, S. L.; Matsudaira, P.; Baltimore, D. & Darnell, J. (2000). Molecular cell biology. W H Freeman, New York.

Melo, A. O.; Castiglioni, G. L.; Souza, G. H. P.; Souza, C. G. (2015). Enriquecimento mineral de Spirulina platensis com ferro (Fe) e selênio (Se). Revista de Patologia Tropical (Impresso), 44, 108-108.

Melo, R. D.; Silva, J. Y. P.; Silva, T. D. O. L. E; Soares, J. K. B.; Oliveira, M. E. G.; Donato, N. R. (2020). Development, physical, physical-chemical and sensory evaluation of fresh pasta enriched with Spirulina platensis: an alternative for infant feeding. Research, Society and Development, 9, 1-20.

Molnár, S., Kiss, A., Virág, D. & Forgó, P. (2013). Comparative studies on accumulation of selected microelements by Spirulina platensis and Chlorella vulgaris with the prospects of functional food development. Chemical Engineering & Process Technology Journal, 4, 1-6.

Naito, K., Matsui, M. & Imai, I. (2005). Ability of marine eukaryotic red tide microalgae to utilize insoluble iron. Harmful Algae, 4, 1021-1032.

Naja, G. & Volesky, B. (2011). In: Kotrba P, Mackova M, Macek T (ed) Microbial Biosorption of Metals. Springer, Dordrecht.

Newman, I. A. (2001). Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant, Cell & Environment, 24, 1-14.

Omar, H. (2002). Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. International Biodeterioration & Biodegradation, 50,95-100.

Palanisami, S., Lee, K. & Nam, P. K. (2013). Nutrient feeding strategy determines the fate of Microalgal growth and carbon metabolizing enzyme system - A study with Desmodesmus commuis LUCC 002. International Journal of Current Microbiology and Applied Sciences, 2, 233-239.

Reboleira, J.; Freitas, R.; Pinteus, S.; Silva, J.; Alves, C.; Pedrosa, R. & Bernardino, S. (2019). Spirulina. Nonvitamin and Nonmineral Nutritional Supplements. Academic Press, Cambridge.

Reid, R. & Hayes, J. (2003). Mechanisms and Control of Nutrient Uptake in Plants. International review of cytology. Supplement, 229, 73-114.

Richmond, A. & Hu, Q. (2013). Handbook of Microalgal Culture: Applied Phycology and Biotechnology. John Wiley & Sons, Ltd, Pondicherry.

Saeid, A., Chojnacka, K., Korczyński, M., Korniewicz, D. & Dobrzański, Z. (2013). Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine. Journal of Applied Phycology, 25, 667-675.

Sahin, I., Keskin, S. Y. & Keskin, C. S. (2013). Biosorption of cadmium, manganese, nickel, lead, and zinc ions by Aspergillus tamarii. Desalination and Water Treatment, 51, 4524-4529.

Saygideger, S., Gulnaz, O., Istifli, E. S. & Yucel, N. (2005). Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: Effect of physicochemical environment. Journal of Hazardous Materials, 126, 96-104.

Schümann, K., Ettle, T., Szegner, B., Elsenhans, B. & Solomons, N. W. (2007). On risks and benefits of iron supplementation recommendations for iron intake revisited. Journal of Trace Elements in Medicine and Biology, 21, 147-168.

Smith, P. J. S., Hammar, K., Porterfield, D. M., Sanger, R. H. & Trimarchi, J. R. (1999). Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microscopy Research and Technique, 46, 398-417.

Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87-96.

Tiantian, Z., Lihua, C., Xinhua, X., Lin, Z. & Huanlin, C. (2011). Advances on heavy metal removal from aqueous solution by algae. Progress in Chemistry, 23, 1782-1794.

Tokuşoglu, Ö. & üUnal, M. K. (2003). Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 68, 1144-1148.

Worms, I., Simon, D. F., Hassler, C. S. & Wilkinson, K. J. (2006). Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie, 88, 1721-1731.

Yeesang, C. & Cheirsilp, B. (2011). Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology, 102, 3034-3040.

Descargas

Publicado

03/02/2021

Cómo citar

CASTIGLIONI, G. L.; FREITAS, F. F.; MOURA, C. J. de; OLIVEIRA, M. A. A. de. Estudio de biosorción de magnesio, zinc, hierro y seleno en cultivos de alta concentración de Spirulina platensis. Research, Society and Development, [S. l.], v. 10, n. 2, p. e3910212154, 2021. DOI: 10.33448/rsd-v10i2.12154. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12154. Acesso em: 17 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas