Producción de cerveza funcional con la adición de probiótico: Saccharomyces boulardii

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i2.12211

Palabras clave:

Levaduras; Probióticos; Propiedades sensoriales.

Resumen

Las industrias han estado invirtiendo en el desarrollo de productos funcionales, como los producidos con microorganismos probióticos. El objetivo de este estudio fue desarrollar una cerveza estilo Pilsen con propiedades funcionales mediante la adición del probiótico Saccharomyces boulardii. La cerveza se fermentó con levadura comercial de baja fermentación. A continuación, se agregó el cultivo probiótico, evaluando su potencial probiótico. Se evaluaron aspectos microbiológicos, sensoriales y fisicoquímicos en los productos obtenidos. La cepa S. boulardii presentó viabilidad probiótica tras la confirmación de las pruebas de resistencia al ácido, sales biliares y alcohol etílico, manteniendo niveles de formación de colonias superiores a los indicados por la legislación durante los 28 días de almacenamiento. La cerveza con adición de probióticos no se ha diferenciado sensorialmente de la cerveza comercial en cuanto a aroma, sabor, apariencia general y color. Los resultados del análisis sensorial, fisicoquímico y microbiológico mostraron la viabilidad de la producción de cerveza probiótica con la adición de S. boulardii.

Citas

Almada, C. N., Martinez, R. C. & Sant´Ana, A. S. (2015). Characterization of the intestinal microbiota and its interaction with probiotics and health impacts. Applied Microbiology and Biotechnology, 99 (1), 4175-4199.

Andriantsoanirina, V., Allano, S., Butel, M. J. & Aires, J. (2013). Tolerance of Bifidobacterium human isolates to bile, acid and oxygen. Anaerobe, 21 (1), 39-42.

Bamforth, C. (2008). Food, Fermentation and Microorganisms. New Jersey: John Wiley & Sons.

Basso, R. F., Alcarde, A. R. & Portugal, C. B. (2016). Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Research International, 86 (1), 112-120.

Brasil, Ministério da Agricultura. Secretaria Nacional de Defesa Agropecuária (1997). Decreto nº 2.314, de 4 de setembro de 1997.Diário oficial da União.

Bustos, A. Y., De Valdez, G. F., Fadda, S. & Taranto, M. P. (2018). New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Research International, 112 (1), 250-262.

Ceccaroni, D., Sileoni, V., Marcon, O., De Francesco, G., Lee, E. G. & Peretti, G. (2018). Specialty rice malt optimization and improvement of rice malt beer aspect and aroma. LWT – Food Science and Technology, 99 (1), 299-305.

Chrysochou, P. (2014). Drink to get drunk or stay healthy? Exploring consumers’ perceptions, motives and preferences for light beer. Food Quality and Preference, 31 (1), 156-163.

Cimini, A. & Moresi, M. (2018). Combined enzymatic and crossflow microfiltration process to assure the colloidal stability of beer. LWT – Food Science and Technology, 90 (1), 132-137.

Deng, Y., Bi, H., Yin, H., Yu, J., Dong, J., Yang, M. & Ma, Y. (2018). Influence of ultrasound assisted thermal processing on the physicochemical and sensorial properties of beer. Ultrasonics Sonochemistry, 40 (1), 166–173.

Di Monaco, R., Cavella, S., Di Marzo, S. & Masi, P. (2004). The effect of expectations generated by brand name on the acceptability of dried semolina pasta. Food Quality and Preference, 15 (5), 429-437.

Duda-Chodak, A., Tarko, T., Satora, P. & Sroka, P. (2015). Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. European Journal of Nutrition, 54 (3), 325-341.

FAO/WHO. (2002). Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria Avaliable in: http://www.fao.org. (Acessed 15 November 2018).

Franz, C. M. A. P. & Holzapfel, W. H. (2011). The Importance of Understanding the Stress Physiology of Lactic Acid Bacteria. In: Tsakalidou, E. & Papadimitriou, K. (eds) Stress Responses of Lactic Acid Bacteria. Food Microbiology and Food Safety, Boston: Springer.

He, Y., Dong, J., Yin, H., Chen, P., Lin, H. & Chen, L. (2014). Monitoring of the production of flavour compounds by analysis of the gene transcription involved in higher alcohol and ester formation by the brewer's yeast Saccharomyces pastorianus using a multiplex RT‐qPCR assay. Journal of the Institute Brewing, 120 (2), 119-126.

Horwitz, W. & Latimer, G. (2005). Official methods of analysis of AOAC International (18th ed). Gaithersburg: AOAC International.

Kelesidis, T. & Pothoulakis, C. (2012). Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therapeutic Advances in Gastroenterology, 5 (2), 111-125.

Kemsawasd, V. & Chaikham, P. (2018). Survival of probiotics in soy yoghurt plus mulberry (c.v. Chiang Mai 60) leaf extract during refrigerated storage and their ability to tolerate gastrointestinal transit. LWT – Food Science and Technology, 93 (1), 94-101.

Krebs, G., Muller, M., Becker, T. & Gastl, M. (2018). Characterization of the macromolecular and sensory profile of non-alcoholic beers produced with various methods. Food Research International, 166 (1), 508-517.

Kumar, A. & Kumar, D. (2015). Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe, 33 (1), 117-123.

McFarland, L. V. (2010). Systematic review and meta-analysis of Saccharomyces boulardii in adult patients. World Journal of Gastroenterology, 16 (18), 2202-2222.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31 (3), 426-428.

Muller, J. L., Protti, K. L., Machado, M. S., Lacerda, L. L. V., Bresolin, T. M. B. & Podlech, P. S. (2007). Comparison of Saccharomyces boulardii growth in an air-lift fermentor and in a shaker. Food Science and Technology, 27 (4), 688-693.

Nag, A. & Das, S. (2013). Improving ambient temperature stability of probiotics with stress adaptation and fluidized bed drying. Journal of Functional Foods, 5 (1), 170-177.

Pan, X., Chen, F., Wu, T., Tang, H. & Zhao, Z. (2009). The acid, bile tolerance and antimicrobial property of Lactobacillus acidophilus NIT. Food Control, 20 (6), 598-602.

Putra, M. D., Abasaeed, A. E., Al-Zahrani, S. M., Gaily, M. H., Sulieman, A. K., Zeinelabdeen, M. A. & Atiyeh, H. K. (2013). Production of fructose from highly concentrated date extracts using Saccharomyces cerevisiae. Biotechnology Letter, 36 (3), 531-536.

Rajkowska, K., Kunicka-Styczynska, A. & Rygala, A. (2012). Probiotic Activity of Saccharomyces cerevisiae var. boulardii Against Human Pathogens. Food Technology and Biotechnology, 50 (2), 230-236.

Ramsey, I., Ross, C., Ford, R., Fisk, I., Yang, Q., Gomez-Lopez, J. & Hort, J. (2018). Using a combined temporal approach to evaluate the influence of ethanol concentration on liking and sensory attributes of lager beer. Food Quality and Preference, 68 (1), 292-303.

Ribéreau-Gayon, J. E. & Peynaud, E. (1996). Análise e controllo del vini. Bologna: Agricole.

Schmidell, W., Lima, U. A., Aquarone, E. & Borzani, W. (2001). Biotecnologia Industrial. Engenharia Bioquímica. São Paulo: Edgard Blücher Ltda.

Schönberger, C. & Kostelecky, T. (2012). 125th Anniversary Review: The Role of Hops in Brewing. Journal of the Institute of Brewing, 117 (3), 259-267.

Sohrabvandi, S., Razavi, S. H., Mousavi, S. M. & Mortazavian, A.M. (2010). Viability of Probiotic Bacteria in Low Alcohol- and NonAlcoholic Beer During Refrigerated Storage. Philippine Agricultural Scientist, 93 (1), 24-28.

SSB - Scandinavian School of Brewing (2016). Available in: www.beercalc.com. (Acessed 25 July 2019).

Stack, H. M., Kearney, N., Stanton, C., Fitzgerald, G. F. & Ross, R. P. (2010). Association of Beta-Glucan Endogenous Production with Increased Stress Tolerance of Intestinal Lactobacilli. Applied and Environmental Microbiology, 76 (2), 500-507.

Stewart, G. G. (2014). Saccharomyces cerevisiae. Encyclopedia of Food Microbiology, 2 (1), 309-315.

Sulieman, A. K., Putra, M. D., Abasaeed, A. E., Gaily, M. H., Al-Zahrani, S. M. & Zeinelabdeen, M. A. (2018). Kinetic modeling of the simultaneous production of ethanol and fructose by Saccharomyces cerevisiae. Electronic Journal of Biotechnology, 34 (1), 1-8.

Ventura, M., O’Toole, P. W., De Vos, W. M. & Van Sinderen, D. (2018) Selected aspects of the human gut microbiota. Cellular and Molecular Life Sciences, 75 (1), 81-82.

Zoumpopoulou, G., Pot, B., Tsakalidou, E, & Papadimitriou, K. (2017). Dairy probiotics: Beyond the role of promoting gut and immune health. International Dairy Journal, 67 (1), 46-60.

Descargas

Publicado

03/02/2021

Cómo citar

REITENBACH, A. F. .; IWASSA, I. J. .; BARROS, B. C. B. . Producción de cerveza funcional con la adición de probiótico: Saccharomyces boulardii. Research, Society and Development, [S. l.], v. 10, n. 2, p. e5010212211, 2021. DOI: 10.33448/rsd-v10i2.12211. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12211. Acesso em: 5 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas