Análisis multifractal de precipitación en la zona costera de Pernambuco, Brasil
DOI:
https://doi.org/10.33448/rsd-v10i2.12424Palabras clave:
Precipitación; Cambio climático; Multifractal.Resumen
El calentamiento global y el cambio climático son las principales preocupaciones de los científicos, ingenieros y políticos porque afectan todos los aspectos de la naturaleza y la vida humana. Las precipitaciones y la temperatura del aire son las variables más importantes que se utilizan para detectar el cambio climático, mediante el análisis estadístico de un conjunto de índices que describen los extremos de temperatura y precipitación. Durante las últimas décadas, se aplicaron conceptos y métodos de la ciencia de sistemas complejos en el análisis de datos hidrológicos para describir la variabilidad de los procesos hidrológicos en múltiples escalas temporales y espaciales. En este trabajo analizamos series temporales de lluvia diaria en Recife, Brasil (durante el período de 1962 a 2019) utilizando el Multifractal Detrended Fluctuation Analysis (MFDFA) para estudiar las correlaciones a largo plazo en subconjuntos de fluctuaciones de lluvia pequeñas y grandes. Calculamos parámetros multifractales (que cuantifican la posición de máximo, ancho y asimetría del espectro multifractal) que se relacionan con diferentes propiedades de las fluctuaciones de las precipitaciones. Al comparar los valores de estos parámetros para dos subperíodos de 29 años, encontramos que después de 1990, la dinámica de la lluvia cambió hacia una persistencia más fuerte, una multifractalidad más débil y una dominancia disminuida de pequeñas fluctuaciones.
Citas
Adarsh, S., Nourani, V., Archana, D. S., & Dharan, D. S. (2020). Multifractal description of daily rainfall fields over India. Journal of Hydrology, 586, 124913. https://doi.org/10.1016/j.jhydrol.2020.124913
Arvor, D., Dubreuil, V., Ronchail, J., Simões, M., & Funatsu, B. M. (2014). Spatial patterns of rainfall regimes related to levels of double cropping agriculture systems in Mato Grosso (Brazil). International Journal of Climatology, 34(8), 2622–2633. https://doi.org/10.1002/joc.3863
da Silva, H. S., Silva, J. R. S., & Stosic, T. (2020). Multifractal analysis of air temperature in Brazil. Physica A: Statistical Mechanics and Its Applications, 549, 124333. https://doi.org/10.1016/j.physa.2020.124333
De Benicio, R. B., Stošić, T., De Figueirêdo, P. H., & Stošić, B. D. (2013). Multifractal behavior of wild-land and forest fire time series in Brazil. Physica A: Statistical Mechanics and Its Applications, 392(24), 6367–6374. https://doi.org/10.1016/j.physa.2013.08.012
Douglas, E. M., & Barros, A. P. (2003a). Probable maximum precipitation estimation using multifractals: Application in the eastern United States. Journal of Hydrometeorology, 4(6), 1012–1024. https://doi.org/10.1175/1525-7541(2003)004<1012:PMPEUM>2.0.CO;2
Douglas, E. M., & Barros, A. P. (2003b). Probable maximum precipitation estimation using multifractals: Application in the eastern United States. Journal of Hydrometeorology, 4(6), 1012–1024. https://doi.org/10.1175/1525-7541(2003)004<1012:PMPEUM>2.0.CO;2
Fuwape, I. A., Ogunjo, S. T., Oluyamo, S. S., & Rabiu, A. B. (2017). Spatial variation of deterministic chaos in mean daily temperature and rainfall over Nigeria. Theoretical and Applied Climatology, 130(1–2), 119–132. https://doi.org/10.1007/s00704-016-1867-x
García-Marín, A. P., Estévez, J., Medina-Cobo, M. T., & Ayuso-Muñoz, J. L. (2015). Delimiting homogeneous regions using the multifractal properties of validated rainfall data series. Journal of Hydrology, 529(P1), 106–119. https://doi.org/10.1016/j.jhydrol.2015.07.021
García-Marín, Amanda P., Jiménez-Hornero, F. J., & Ayuso-Muñoz, J. L. (2008). Multifractal analysis as a tool for validating a rainfall model. Hydrological Processes, 22(14), 2672–2688. https://doi.org/10.1002/hyp.6864
Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalan, C. (2006). Climate change and human health: Impacts, vulnerability and public health. Public Health, 120(7), 585–596. https://doi.org/10.1016/j.puhe.2006.01.002
Herr, H. D., & Krzysztofowicz, R. (2005). Generic probability distribution of rainfall in space: The bivariate model. Journal of Hydrology, 306(1–4), 234–263. https://doi.org/10.1016/j.jhydrol.2004.09.011
Jha, S. K., & Sivakumar, B. (2017a). Complex networks for rainfall modeling: Spatial connections, temporal scale, and network size. Journal of Hydrology, 554, 482–489. https://doi.org/10.1016/j.jhydrol.2017.09.030
Jha, S. K., & Sivakumar, B. (2017b). Complex networks for rainfall modeling: Spatial connections, temporal scale, and network size. Journal of Hydrology, 554(9), 482–489. https://doi.org/10.1016/j.jhydrol.2017.09.030
Kabo-Bah, A. T., Diji, C. J., Nokoe, K., Mulugetta, Y., Obeng-Ofori, D., & Akpoti, K. (2016). Multiyear rainfall and temperature trends in the Volta River basin and their potential impact on hydropower generation in Ghana. Climate, 4(4), 49. https://doi.org/10.3390/cli4040049
Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and Its Applications, 316(1–4), 87–114. https://doi.org/10.1016/S0378-4371(02)01383-3
Krzyszczak, J., Baranowski, P., Zubik, M., Kazandjiev, V., Georgieva, V., Sławiński, C., Siwek, K., Kozyra, J., & Nieróbca, A. (2019). Multifractal characterization and comparison of meteorological time series from two climatic zones. Theoretical and Applied Climatology, 137(3–4), 1811–1824. https://doi.org/10.1007/s00704-018-2705-0
Langousis, A., Veneziano, D., Furcolo, P., & Lepore, C. (2009). Multifractal rainfall extremes: Theoretical analysis and practical estimation. Chaos, Solitons and Fractals, 39(3), 1182–1194. https://doi.org/10.1016/j.chaos.2007.06.004
Movahed, M. S., Jafari, G. R., Ghasemi, F., Rahvar, S., & Tabar, M. R. R. (2006). Multifractal detrended fluctuation analysis of sunspot time series. Journal of Statistical Mechanics: Theory and Experiment, 316(2), 87–114. https://doi.org/10.1088/1742-5468/2006/02/P02003
Oliveira, P. T., Santos e Silva, C. M., & Lima, K. C. (2017). Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Theoretical and Applied Climatology, 130(1–2), 77–90. https://doi.org/10.1007/s00704-016-1865-z
Park, J., Kang, H., Lee, Y. S., & Kim, M. (2011). Changes in the extreme daily rainfall in South Korea. International Journal of Climatology, 31(15), 2290–2299.
Park, J. S., Kang, H. S., Lee, Y. S., & Kim, M. K. (2011). Changes in the extreme daily rainfall in South Korea. International Journal of Climatology, 31(15), 2290–2299. https://doi.org/10.1002/joc.2236
Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E, 49(2), 1685–1689. https://doi.org/10.1103/PhysRevE.49.1685
Sa’adi, Z., Shahid, S., Ismail, T., Chung, E. S., & Wang, X. J. (2019). Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorology and Atmospheric Physics, 131(3), 263–277. https://doi.org/10.1007/s00703-017-0564-3
Shimizu, Y. U., Thurner, S., & Ehrenberger, K. (2002). Multifractal spectra as a measure of complexity in human posture. Fractals, 10(1), 103–116. https://doi.org/10.1142/S0218348X02001130
Stošić, D., Stošić, D., Stošić, T., & Stanley, H. E. (2015). Multifractal analysis of managed and independent float exchange rates. Physica A: Statistical Mechanics and Its Applications, 428, 13–18. https://doi.org/10.1016/j.physa.2015.02.055
Svensson, C., Olsson, J., & Berndtsson, R. (1996). Multifractal properties of daily rainfall in two different climates. Water Resources Research, 32(8), 2463–2472. https://doi.org/10.1029/96WR01099
Tan, X., & Gan, T. Y. (2017). Multifractality of Canadian precipitation and streamflow. International Journal of Climatology, 37, 1221–1236. https://doi.org/10.1002/joc.5078
Telesca, L., & Toth, L. (2016). Multifractal detrended fluctuation analysis of Pannonian earthquake magnitude series. Physica A: Statistical Mechanics and Its Applications, 448, 21–29. https://doi.org/10.1016/j.physa.2015.12.095
Weltzin, J. F., Loik, M. E., Schwinning, S., Williams, D. G., Fay, P. A., Haddad, B. M., Harte, J., Huxman, T. E., Knapp, A. K., Lin, G., Pockman, W. T., Shaw, M. R., Small, E. E., Smith, M. D., Smith, S. D., Tissue, D. T., & Zak, J. C. (2003). Assessing the Response of Terrestrial Ecosystems to Potential Changes in Precipitation. In BioScience (Vol. 53, Issue 10, pp. 941–952). American Institute of Biological Sciences. https://doi.org/10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2
Xavier, S. F. A., da Silva Jale, J., Stosic, T., dos Santos, C. A. C., & Singh, V. P. (2019). An application of sample entropy to precipitation in Paraíba State, Brazil. Theoretical and Applied Climatology, 136(1–2), 429–440. https://doi.org/10.1007/s00704-018-2496-3
Zorick, T., & Mandelkern, M. A. (2013). Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique. PLoS ONE, 8(7), e68360. https://doi.org/10.1371/journal.pone.0068360
Zunino, L., Tabak, B. M., Figliola, A., Pérez, D. G., Garavaglia, M., & Rosso, O. A. (2008). A multifractal approach for stock market inefficiency. Physica A: Statistical Mechanics and Its Applications, 387(26), 6558–6566. https://doi.org/10.1016/j.physa.2008.08.028
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Ikaro Daniel de Carvalho Barreto; Tatijana Stosic
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.