Potencial antipalúdico de quinonas aislados de plantas: una revision integradora

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i2.12507

Palabras clave:

Quinonas; Plasmodium; Antimaláricos; Plantas.

Resumen

El tratamiento antimalárico suele asociarse a los factores de resistencia desarrollados por Plasmodiumy que generan un tratamiento farmacológico ineficaz. En base a esto, la búsqueda de nuevas alternativas terapéuticas es necesaria y urgente. El propósito de esta revisión es evaluar el potencial antipalúdico de las quinonas aisladas de plantas. La búsqueda de artículos científicos se realizó en el Portal de Revistas CAPES (PPC), Biblioteca Virtual en Salud (BVS), PUBMED, NCBI y SCIELO, con los descriptores utilizados: quinonas y antimaláricos. Los criterios de inclusión se adoptaron basándose en estudios sobre quinonas aisladas de plantas y probadas contra Plasmodium falciparum e Plasmodium berghei. En cuanto a los criterios de exclusión, se basaron principalmente en artículos que probaron extractos, fracciones y síntesis de quinonas obtenidas de plantas y otros productos naturales. Se recopilaron 1344 publicaciones para cribado (PPC = 5, VHL = 248, PUBMED = 525, NCBI = 462 y SCIELO = 94). De este total, se excluyeron 1.280 artículos, con solo 64 artículos seleccionados para lectura completa. Todas las benzoquinonas fueron activas contra P. falciparum. Las naftoquinonas fueron activas, inactivas y moderadamente activas contra el P. falciparum e P. berghei. Las antraquinonas y antronas fueron activas y moderadamente activas contra P. falciparum. La naftoquinona 2-acetilnafto- [2,3b] -furan-4,9-diona fue la más activa entre todas las moléculas probadas contra Plasmodium, considerándose la más prometedora en el desarrollo de fármacos futuros. Mientras que el lapachol fue la naftoquinona más estudiada y los cambios estructurales no parecen contribuir a la actividad. En resumen, las quinonas son prometedoras como antipalúdicos, sin embargo, necesitan estudios in vivo.

Citas

Abdissa, D., Geleta, G., Bacha, K., & Abdissa, N. (2017). Phytochemical investigation of Aloe pulcherrima roots and evaluation for its antibacterial and antiplasmodial activities. PLoS One, 12(3), e0173882. doi: https://doi.org/10.1371/journal.pone.0173882

Abdissa, N., Induli, M., Akala, H. M., Heydenreich, M., Midiwo, J. O., Ndakala, A., & Yenesew, A. (2013). Knipholone cyclooxanthrone and an anthraquinone dimer with antiplasmodial activities from the roots of Kniphofia foliosa. Phytochemistry Letters, 6(2), 241-245. Doi: 10.1016/j.phytol.2013.02.005

Aguiar, A. C. C., da Rocha, E. M., de Souza, N. B., França, T. C., & Krettli, A. U. (2012). New approaches in antimalarial drug discovery and development: a review. Memorias do Instituto Oswaldo Cruz, 107(7), 831-845. Doi: 10.1590/S0074-02762012000700001

Barbosa, M. I., Correa, R. S., de Oliveira, K. M., Rodrigues, C., Ellena, J., Nascimento, O. R., & & Batista, A. A. (2014). Antiparasitic activities of novel ruthenium/lapachol complexes. Journal of inorganic biochemistry, 136, 33-39. DOI: 10.1016/j.jinorgbio.2014.03.009

Basco, L. K., de Pécoulas, P. E., Wilson, C. M., Le Bras, J., & Mazabraud, A. (1995). Point mutations in the dihydrofolate reductase-thymidylate synthase gene and pyrimethamine and cycloguanil resistance in. Molecular and biochemical parasitology, 69, 135-138. doi: 10.1016/0166-6851(94)00207-4.

Birth, D., Kao, W. C., & Hunte, C. (2014). Structural analysis of atovaquone-inhibited cytochrome bc 1 complex reveals the molecular basis of antimalarial drug action. Nature communications, 5(1), 1-11. doi: 10.1038/ncomms5029|www.nature.com/ naturecommunications.

Boonphong, S., Puangsombat, P., Baramee, A., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2007). Bioactive compounds from Bauhinia purpurea possessing antimalarial, antimycobacterial, antifungal, anti-inflammatory, and cytotoxic activities. Journal of natural products, 70(5), 795-801. doi: 10.1021/np070010e.

Bringmann, G., Mutanyatta‐Comar, J., Maksimenka, K., Wanjohi, J. M., Heydenreich, M., Brun, R., & Yenesew, A. (2008). Joziknipholones A and B: the first dimeric phenylanthraquinones, from the roots of Bulbine frutescens. Chemistry–A European Journal, 14(5), 1420-1429. doi: https://doi.org/10.1002/chem.200701328

Coutinho, J. P., Aguiar, A. C. C., Santos, P. A. D., Lima, J. C., Rocha, M. G. L., Zani, C. L., & Krettli, A. U. (2013). Aspidosperma (Apocynaceae) plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth) used as a remedy to treat fever and malaria in the Amazon. Memórias do Instituto Oswaldo Cruz, 108(8), 974-982. doi: https://doi.org/10.1590/0074-0276130246

de Andrade-Neto, V. F., Goulart, M. O., da Silva Filho, J. F., da Silva, M. J., Maria do Carmo, F. R., Pinto, A. V., & Krettli, A. U. (2004). Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorganic & Medicinal Chemistry Letters, 14(5), 1145-1149. doi: 10.1016/j.bmcl.2003.12.069

do Nascimento, M. F. A., Borgati, T. F., de Souza, L. C. R., Tagliati, C. A., & de Oliveira, A. B. (2020). In silico, in vitro and in vivo evaluation of natural Bignoniaceous naphthoquinones in comparison with atovaquone targeting the selection of potential antimalarial candidates. Toxicology and Applied Pharmacology, 401, 115074. doi: 10.1016/j.taap.2020.115074.

El Hage, S., Ane, M., Stigliani, J. L., Marjorie, M., Vial, H., Baziard-Mouysset, G., & Payard, M. (2009). Synthesis and antimalarial activity of new atovaquone derivatives. European journal of medicinal chemistry, 44(11), 4778-4782. doi: 10.1016/j.ejmech.2009.07.021.

Endale, M., Ekberg, A., Akala, H. M., Alao, J. P., Sunnerhagen, P., Yenesew, A., & Erdélyi, M. (2012). Busseihydroquinones A–D from the Roots of Pentas bussei. Journal of Natural Products, 75(7), 1299-1304.

Feilcke, R., Arnouk, G., Raphane, B., Richard, K., Tietjen, I., Andrae-Marobela, K., & Fobofou, S. A. (2019). Biological activity and stability analyses of knipholone anthrone, a phenyl anthraquinone derivative isolated from Kniphofia foliosa Hochst. Journal of pharmaceutical and biomedical analysis, 174, 277-285. doi: 10.1016/j.jpba.2019.05.065

Gamo, F. J., Sanz, L. M., Vidal, J., De Cozar, C., Alvarez, E., Lavandera, J. L., & Garcia-Bustos, J. F. (2010). Thousands of chemical starting points for antimalarial lead identification. Nature, 465(7296), 305-310. doi: 10.1038/nature09107

Gómez-Estrada, H., Gaitán-Ibarra, R., Díaz-Castillo, F., Pérez, H. A., & Medina, J. D. (2012). In vitro antimalarial activity of fractions and constituents isolated from Tabebuia billbergii. Revista Cubana de Plantas Medicinales, 17(2), 172-180.

Hughes, L. M., Lanteri, C. A., O’Neil, M. T., Johnson, J. D., Gribble, G. W., & Trumpower, B. L. (2011). Design of anti-parasitic and anti-fungal hydroxy-naphthoquinones that are less susceptible to drug resistance. Molecular and biochemical parasitology, 177(1), 12-19. doi: 10.1016/j.molbiopara.2011.01.002.

Hyde, J. E. (2002). Mechanisms of resistance of Plasmodium falciparum to antimalarial drugs. Microbes and Infection, 4(2), 165-174. doi: 10.1016/s1286-4579(01)01524-6.

Ichino, C., Soonthornchareonnon, N., Chuakul, W., Kiyohara, H., Ishiyama, A., Sekiguchi, H., & Yamada, H. (2006). Screening of Thai medicinal plant extracts and their active constituents for in vitro antimalarial activity. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 20(4), 307-309. doi: https://doi.org/10.1002/ptr.1850.

Induli, M., Gebru, M., Abdissa, N., Akala, H., Wekesa, I., Byamukama, R., & Yenesew, A. (2013). Antiplasmodial quinones from the rhizomes of Kniphofia foliosa. Natural product communications, 8(9), 1261-1264. doi: https://doi.org/10.1177/1934578X1300800920

Kumar, R., Musiyenko, A., & Barik, S. (2003). The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malaria Journal, 2(1), 1-11.

Lenta, B. N., Devkota, K. P., Ngouela, S., Boyom, F. F., Naz, Q., Choudhary, M. I., & Sewald, N. (2008). Anti-plasmodial and cholinesterase inhibiting activities of some constituents of Psorospermum glaberrimum. Chemical and Pharmaceutical Bulletin, 56(2), 222-226. Doi: https://doi.org/10.1248/cpb.56.222

Lenta, B. N., Ngouela, S., Boyom, F. F., Tantangmo, F., Tchouya, G. R. F., Tsamo, E., & Connolly, J. D. (2007). Anti-plasmodial activity of some constituents of the root bark of Harungana madagascariensis L AM.(Hypericaceae). Chemical and pharmaceutical bulletin, 55(3), 464-467.

Likhitwitayawuid, K., Kaewamatawong, R., Ruangrungsi, N., & Krungkrai, J. (1998). Antimalarial naphthoquinones from Nepenthes thorelii. Planta medica, 64(03), 237-241. doi: 10.1055/s-2006-957417.

Moreira, D. R., de Sá, M. S., Macedo, T. S., Menezes, M. N., Reys, J. R. M., Santana, A. E., & Soares, M. B. (2015). Evaluation of naphthoquinones identified the acetylated isolapachol as a potent and selective antiplasmodium agent. Journal of enzyme inhibition and medicinal chemistry, 30(4), 615-621.

Mutanyatta, J., Bezabih, M., Abegaz, B. M., Dreyer, M., Brun, R., Kocher, N., & Bringmann, G. (2005). The first 6′-O-sulfated phenylanthraquinones: isolation from Bulbine frutescens, structural elucidation, enantiomeric purity, and partial synthesis. Tetrahedron, 61(35), 8475-8484.

Nájera, J. A. (2001). Malaria control: achievements, problems and strategies. Parassitologia, 43(1-2), 1-89.

Ngemenya, M. N., Metuge, H. M., Mbah, J. A., Zofou, D., Babiaka, S. B., & Titanji, V. P. (2015). Isolation of natural product hits from Peperomia species with synergistic activity against resistant Plasmodium falciparum strains. European Journal of Medicinal Plants, 5(1), 77-87.

Noedl, H., Se, Y., Schaecher, K., Smith, B. L., Socheat, D., & Fukuda, M. M. (2008). Evidence of artemisinin-resistant malaria in western Cambodia. New England Journal of Medicine, 359(24), 2619-2620. doi: 10.1056/NEJMc0805011

Onegi, B., Kraft, C., Köhler, I., Freund, M., Jenett-Siems, K., Siems, K., & Eich, E. (2002). Antiplasmodial activity of naphthoquinones and one anthraquinone from Stereospermum kunthianum. Phytochemistry, 60(1), 39-44. doi: 10.1016/s0031-9422(02)00072-9.

Organización Panamericana de la Salud. Actualización Epidemiológica: Malaria en las Américas en el contexto de la pandemia de COVID-19. Washington, D.C.: OPS/OMS (2020).

Penna-Coutinho, J., Cortopassi, W. A., Oliveira, A. A., França, T. C. C., & Krettli, A. U. (2011). Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PloS one, 6(7), e21237. doi: https://doi.org/10.1371/journal.pone.0021237.

Radwan, M. M., ElSohly, M. A., Slade, D., Ahmed, S. A., Wilson, L., El-Alfy, A. T., & Ross, S. A. (2008). Non-cannabinoid constituents from a high potency Cannabis sativa variety. Phytochemistry, 69(14), 2627-2633.

Richter, K., & Buchner, J. (2001). Hsp90: chaperoning signal transduction. Journal of cellular physiology, 188(3), 281-290. doi: 10.1016/j.phytochem.2008.07.010.

Silva, M. N. D., Ferreira, V. F., & de Souza, M. C. B. (2003). Um panorama atual da química e da farmacologia de naftoquinonas, com ênfase na beta-lapachona e derivados. Química Nova, 26(3), 407-416. doi: http://dx.doi.org/10.1590/S0100-40422003000300019.

Souza, N. B. D., de Andrade, I. M., Carneiro, P. F., Jardim, G. A., de Melo, I. M., da Silva Júnior, E. N., & Krettli, A. U. (2014). Blood shizonticidal activities of phenazines and naphthoquinoidal compounds against Plasmodium falciparum in vitro and in mice malaria studies. Memórias do Instituto Oswaldo Cruz, 109(5), 546-552. doi: https://doi.org/10.1590/0074-0276130603

Tasdemir, D., Brun, R., Yardley, V., Franzblau, S. G., & Rüedi, P. (2006). Antituberculotic and antiprotozoal activities of primin, a natural benzoquinone: In vitro and in vivo studies. Chemistry & biodiversity, 3(11), 1230-1237. Doi: 10.1002/cbdv.200690124.

Theerachayanan, T., Sirithunyalug, B., & Piyamongkol, S. (2007). Antimalarial and antimycobacterial activities of dimeric Naphthoquinone from Diospyros glandulosa and Diospyros rhodocalyx. CMU J Nat Sci, 6, 253-258.

Thomson, R. H. R. H. (2012). Naturally occurring quinones. Elsevier.

Vale, V. V., Cruz, J. N., Viana, G. M. R., Póvoa, M. M., Brasil, D. D. S. B., & Dolabela, M. F. (2020). Naphthoquinones isolated from Eleutherine plicata herb: In vitro antimalarial activity and molecular modeling to investigate their binding modes. Medicinal Chemistry Research, 29(3), 487-494. doi: https://doi.org/10.1007/s00044-019-02498-z.

Van Hong, N., Amambua-Ngwa, A., Tuan, N. Q., Cuong, D. D., Giang, N. T. H., Van Dung, N., & Erhart, A. (2014). Severe malaria not responsive to artemisinin derivatives in man returning from Angola to Vietnam. Emerging Infectious Diseases, 20(7), 1207-1210. doi: https://dx.doi.org/10.3201/eid2007.140155.

Waller, R. F., & McFadden, G. I. (2005). The apicoplast: a review of the derived plastid of apicomplexan parasites. Current issues in molecular biology, 7, 57-80.

Weiss, C. R., Moideen, S. V., Croft, S. L., & Houghton, P. J. (2000). Activity of extracts and isolated naphthoquinones from Kigelia pinnata against Plasmodium falciparum. Journal of Natural Products, 63(9), 1306-1309. doi: 10.1021/np000029g.

Winstanley, P. (2001). Modern chemotherapeutic options for malaria. The Lancet infectious diseases, 1(4), 242-250. doi: 10.1016/S1473-3099(01)00119-0

Wongsrichanalai, C., Pickard, A. L., Wernsdorfer, W. H., & Meshnick, S. R. (2002). Epidemiology of drug-resistant malaria. The Lancet infectious diseases, 2(4), 209-218. doi: 10.1016/s1473-3099(02)00239-6.

World Health Organization. World malaria report. Geneva, (2019).

Wube, A. A., Bucar, F., Asres, K., Gibbons, S., Rattray, L., & Croft, S. L. (2005). Antimalarial compounds from Kniphofia foliosa roots. Phytotherapy Research, 19(6), 472-476. doi: 10.1002/ptr.1635.

Descargas

Publicado

20/02/2021

Cómo citar

GOMES, A. R. Q. .; BRÍGIDO, H. P. C. .; VALE, V. V. .; CORREA-BARBOSA, J.; PERCÁRIO, S.; DOLABELA, M. F. . Potencial antipalúdico de quinonas aislados de plantas: una revision integradora. Research, Society and Development, [S. l.], v. 10, n. 2, p. e38210212507, 2021. DOI: 10.33448/rsd-v10i2.12507. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12507. Acesso em: 30 jun. 2024.

Número

Sección

Revisiones