Influencia de la composición de ácidos grasos de la dieta sobre la actividad enzimática y la histología digestiva del jundiá (Rhamdia quelen)
DOI:
https://doi.org/10.33448/rsd-v10i3.12530Palabras clave:
Harina de pescado; Crecimiento; Larvicultura; Concentrado de proteína de soja.Resumen
Los ácidos grasos de la dieta pueden influir en el desarrollo del tracto digestivo y la activación inicial de las enzimas digestivas en el pescado. El objetivo de este estudio fue evaluar el efecto del perfil lipídico de la dieta sobre la ontogenia y la actividad de las enzimas digestivas en postlarvas de jundiá alimentadas con dietas prácticas. Se probaron cinco dietas, reemplazando el hígado de ave por concentrado de proteína de soja (CPS) o harina de pescado (FP): control, 15CPS, 30CPS, 15FP y 30FP. La actividad enzimática de los peces se analizó 32 horas después de la fertilización. Se analizaron proteasa, tripsina, quimotripsina, lipasa, amilasa y maltasa. Se analizó el desarrollo histológico desde el inicio de la alimentación hasta los 28 días. La actividad enzimática mostró picos para las postlarvas alimentadas con la dieta 15CPS y los peces alimentados con la dieta 15FP mostraron un mejor crecimiento. El desarrollo del sistema digestivo no sufrió daños por las dietas ofrecidas. Las postlarvas alimentadas con la dieta 30CPS mostraron un desarrollo reducido del tracto digestivo. La dieta 15FP proporciona un buen perfil lipídico para las postlarvas de jundiá.
Citas
Albro, P. W., Hall, R. D., Corbett. J. T., & Schroeder, J. (1985). Activation of nonspecific lipase (EC3.1.1.) by bile salts. Biochimica et Biophysica Acta, 835, 477-490. https://doi.org/10.1016/0005-2760(85)90117-1
Alveal, K., Silva, A., Lohrmann, K. B., & Viana, M. T. (2019). Morphofunctional characterization of the digestive system in the palm ruff larvae, Seriolella violacea under culture conditions. Aquaculture, 501, 51-61. https://doi.org/10.1016/j.aqua culture.2018.10.020
Asil, S. M., Kenari, A. A., Miyanji, G. R., & Van Der Kraak, G. (2017). The influence of dietary arachidonic acid on growth, reproductive performance, and fatty acid composition of ovary, egg and larvae in an anabantid model fish, Blue gourami (Trichopodus trichopterus; Pallas, 1770). Aquaculture, 476, 8-18. https://doi.org/10.1016/j.aquaculture.2017.03.048
American Veterinary Medical Association (AVMA) (2007). Guidelines on Euthanasia (Formerly Report of the AVMA Panel on Euthanasia), American Veterinary Medical Association (AVMA), United States of America.
Babaei, S. S., Abedian Kenari, A., Nazari, R., & Gisbert, E. (2011). Developmental changes of digestive enzymes in Persian sturgeon Acipenser persicus during larval ontogeny. Aquaculture, 318, 138-144. https://doi.org/10.1016/j.aquaculture.2011.04.032
Bernfeld, P. (1955). Amylases α e β: colorimetric assay methods. In: Colowick, S.P.; Kaplan, N.O. Methods in Enzymology, Academic Press
Bradford, M. M. A. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Cargnin-Ferreira, E., & Sarasquete Reiriz, C. (2008). Histofisiología de moluscos bivalvos marinos. CSIC, 94p.
Coldebella, I. J., Radünz Neto, J., Mallmann, C. A., Veiverberg, C. A., Bergamin, G. T., Pedron, F. A., Ferreira, D., & Barcellos, L. J. G. (2011). The effects of different protein levels in the diet on reproductive indexes of Rhamdia quelen females. Aquaculture, 312, 137-144. https://doi.org/10.1016/j.aquaculture.2010.12.021
Conceição, L., Aragão, C., & Rønnestad, I. Proteins. (2011). In: Holt, G .J. Larval Fish Nutrition, 3, 88-120
Corrêa, C. F., Aguiar, L. H., Lundstedt, L. M., & Moraes, G. (2007). Responses of digestive enzymes of tambaqui Colossoma macropomum to dietary cornstarch changes and metabolic inferences. Comparative Biochemistry and Physiology, 147, 857-862. https://doi.org/10.1016/j.cbpa.2006.12.045
Cui, K., Cheng, D., Ma, Z., Qin, J.G., Jiang, S., Sun, D., & Ma, S. (2017). Ontogenetic development of digestive enzymes in larval and juvenile crimson snapper Lutjanus erythopterus (Bloch 1790). Aquaculture Research, 48, 4533-4544. https://doi.org/10.1111/are.13278
Drew, M. D., Borgeson, T. L., & Thiessen, D. L. (2007). A review of processing of feed ingredients to enhance diet digestibility in finfish. Animal Feed Science and Technology, 138, 118-136. https://doi.org/10.1016/j.anifeedsci.2007.06.019
Mohd Faudzi, N., Yong, A. S. K., Shapawi, R., Senoo, S., Biswas, A., & Takii, K. (2018). Soy protein concentrate as an alternative in replacement of fish meal in the feeds of hybrid grouper, brown‐marbled grouper (Epinephelus fuscoguttatus) × giant grouper (Epinephelus lanceolatus) juvenile. Aquaculture Research, 49, 431-441. https://doi.org/10.1111/are.13474
Fontinelli, E., & Radünz Neto, J. (2007). Efeito do concentrado proteico de soja em rações, com e sem suplementação em aminoácidos, para pós-larvas de jundiá (Rhamdia quelen). Revista Brasileira de Agrociência, 13, 225-229.
Gao, X. Q., Liu, Z. F., Guan, C. T., Huang, B., Lei, J. L., Li, J., Guo, Z., Wang, Y., & Hong, L. (2016). Developmental changes in digestive enzyme activity in American shad, Alosa sapidissima, during early ontogeny. Fish Physiology and Biochemistry, 43, 397-409. https://doi.org/10.1007/s10695-016-0295-2
Gisbert, E., Giménez, G., Fernández, I., Kotzamanis, Y., & Estévez, A. (2008). Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture, 287, 381-387. https://doi.org/10.1016/j.aquaculture.2008.10.039
Hartman, L., & Lago, B. C. (1973). A rapid preparation of fatty methyl esters from lipids. Laboratory Practice, 22, 475-477.
Hidalgo, M. C., Urea, E., & Sanz, A. (1999). Comparative study of digestive enzymes in fish with different nutritional habits: Proteolytic and amylase activities. Aquaculture, 170, 267-283. https://doi.org/10.1016/S0044-8486(98)00413-X
Hien, T. T. T., Phu, T. M., Tu, T. L. C., Tien, N. V., Duc, P. M., & Bengtson, D. A. (2017). Effects of replacing fish meal with soya protein concentrate on growth, feed efficiency and digestibility in diets for snakehead, Channa striata. Aquaculture Research, 48, 3174-3181. https://doi.org/10.1111/are.13147
Hummel, B. C. W. (1959). A modified spectrophotometric determination of chymotrypsin, trypsin and thrombin. Canadian Journal of Biochemistry and Physiology, 37, 1393-1399. https://doi.org/10.1139/o59-157
Izquierdo, M., & Koven, W. (2011). Lipids. In: Holt, I. Larval Fish Nutrition. Wiley Online Library. 448 p.
Ji, H., Li, J., & Liu, P. (2011). Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 159, 49-56. https://doi.org/10.1016/j.cbpb.2011.01.009
Krogdahl, A., Penn, M., Torsen, J., Refstie, S. & Bakke, A. M. (2010). Important antinutrients in plant feedstufs for aquaculture: an update on recent fndings regarding responses in salmonids. Aquaculture Research, 41, 333–344. https://doi.org/10.1111/j.1365-2109.2009.02426.x
Kumar, V., Sinha, A. K., Makkar, H. P. S., Boeck, G. D., & Becker, K. (2011). Phytate and phytase in fish nutrition. Journal of Animal Physiology and Animal Nutrition, 96, 335–364. https://doi.org/10.1111/j.1439-0396.2011.01169.x
Kumar, S., Sándor Zs, J., Nagy, Z., Fazekas, G., Havasi, M., Sinha, A. K., Boeck, G., & Gál, D. (2017). Potential of processed animal protein versus soybean meal to replace fish meal in practical diets for European catfish (Silurus glanis): growth response and liver gene expression. Aquaculture Nutrition, 23, 1179-1189. https://doi.org/10.1111/anu.12487
Lazo, J. P., Darias, M. J., & Gisbert, E. (2011). Ontogeny of the digestive tract. In: Holt, I. Larval Fish Nutrition. Wiley Online Library. 448 p.
Liu, X., Ye, J., Wang, K., Kong, J., Yang, W., & Zhou, L. (2012). Partial replacement of fish meal with peanut meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture Research, 43, 745-755. https://doi.org/10.1111/j.1365-2109.2011.02883.x
Mente, E., Solovyev, M. M., Vlahos, N., Rotllant, G., & Gisbert, E. (2017). Digestive Enzyme Activity during Initial Ontogeny and after Feeding Diets with Different Protein Sources in Zebra Cichlid, Archocentrus nigrofasciatus. Journal of the World Aquaculture Society, 48, 831-848. https://doi.org/10.1111/jwas.12381
Mitra, A., Mukhopadhyay, P. K., & Homechaudhuri, S. (2017). Profile of Digestive Enzymes Activity During Early Development of Featherback Chitala chitala (Hamilton, 1822). Proceedings of the Zoological Society, 70,141-149. https://doi 10.1007/s12595-016-0169-8
Mo, W. Y., Man, Y. B., & Wong, M. H. (2018). Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge. Science of the Total Environment, 613, 635-643. https://doi.org/10.1016/j.scitotenv.2017.08.321
Mommsen, T., & Korsgaard, B. (2008). Vitellogenesis. In: Rocha, M. J., Arukwe, A., Kapoor, B. G. Fish Reproduction. Science Publishers, Enfield, N.H., 113-169.
Moura, G. S., Oliveira, M. G. A., & Lanna, E. A. T. (2012). Desempenho e atividade de lipase em tilápias do Nilo. Archivos de Zootecnia, 61, 367-374. http://dx.doi.org/10.4321/S0004-05922012000300005
Mousavi-Sabet, H., Ghasemnezhad, H., & Petrescu-Ma, I. V. (2013). Effects of diet containing enriched Artemia with unsaturated fatty acids and vitamin C on growth, survival and stress resistance of swordtail Xiphophorus hellerii fry. Poeciliid Research, 3, 14-21.
NRC - National Research Council. (2011). Nutrient requirements of fish and shrimp. National Academies Press, 376 p.
El Kertaoui, N., Lund, I., Assogba, H., Domínguez, D., Izquierdo, M. S., Baekelandt, S., Cornet, V., Mandiki, S.N.M., Montero, D., & Kestemont, P. (2019). Key nutritional factors and interactions during larval development of pikeperch (Sander lucioperca). Scientific Reports, 9, 7074. https://doi.org/10.1038/s41598-019-43491-1
Park, H. G., Puvanendran, V., Kellett, A., Parrish, C. C., & Brown, J. A. (2006). Effect of enriched rotifers on growth, survival, and composition of larval Atlantic cod (Gadus morhua). Journal of Marine Science, 63, 285-295. https://doi.org/10.1016/j.icesjms.2005.10.011
Piaia, R., & Radünz Neto, J. (1997). Avaliação de diferentes fontes protéicas sobre o desempenho inicial de larvas do jundiá Rhamdia quelen. Ciência Rural, 27, 319-323. http://dx.doi.org/10.1590/S0103-84781997000200025.
Portella, M. C., Leitão, N. J., Takata, R., & Lopes, T. S. (2012). Alimentação e nutrição de larvas. In: NUTRIAQUA: nutrição e alimentação de espécies de interesse para a aquicultura brasileira, 9, 185-216.
Portella, M. C., Jomori, R. K., Leitão, N. J., Menossi, O. C. C., Freitas, T. M., Kojima, J. T., Lopes, T. S., Clavijo-Ayala, J. A., & Carneiro, D. J. (2014). Larval development of indigenous South American freshwater fish species, with particular reference to pacu (Piaractus mesopotamicus). Aquaculture, 432, 402-417. https://doi.org/10.1016/j.aquaculture.2014.04.032
Rossato, S., Maschio, D., Martinelli, S. G., Nunes, L. M. D. C., Radünz Neto, J., & Lazzari, R. (2018). Fish meal obtained from the processing of Rhamdia quelen: An alternative protein source. Boletim do Instituto de Pesca, 44, 1361-1372. https://doi.org/10.20950/16782305.2018.44.4.350
Sá, M. V. C., Sabry-Neto, H., & Nunes, A. J. P. (2013). Dietary concentration of marine oil affects replacement of fish meal by soy protein concentrate in practical diets for te white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 19, 199-210. https://doi.org/10.1111/j.1365-2095.2012.00954.x
Sargent, J., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., & Tocher, D. (1999). Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture, 179, 217-229. https://doi.org/10.1016/S0044-8486(99)00191-X
Segura, J. G., Campanharo, J. C., Oliveira, K. R. B., Natori, M. M., Medeiros, A. C. L., & Viegas, E. M. M. (2017). Relação 18:3n3/18:2n6 sobre a digestibilidade de ácidos graxos em pacu. Boletim do Instituto de Pesca, 43, 222-230. https://doi.org/10.20950/1678-2305.2017v43n2p222
Serra, C. R., Almeida, E. M., Guerreiro, I., Santos, R., Merrifield, D. L., Tavares, F., Oliva-teles, A. & Enes, P. (2019). Selection of carbohydrate-active probiotics from the gut of carnivorous fish fed plant-based diets. Scientific Reports, 9, 6384. https://doi.org/10.1038/s41598-019-42716-7
Seong, T., Matsutani, H., Haga, Y., Kitagima, R., & Satoh, S. (2019). First step of non‐fish meal, non‐fish oil diet development for red seabream, (Pagrus major), with plant protein sources and microalgae Schizochytrium sp. Aquaculture Research, 50, 2460-2468. https://doi.org/10.1111/are.14199
Silveira, J., Silva, C.P., Cargnin-Ferreira, E., Alexandre, D., Elias, M.A., & Fracalossi, D. M. (2013). Freshwater catfish jundiá (Rhamdia quelen) larvae are prepared to digest inert feed at the exogenous feeding onset: physiological and histological assessments. Fish Physiology and Biochemistry, 39, 1581-1590. https://doi.org/10.1007/s10695-013-9810-x
Sinha, A. K., Kumar, V., Makkar, H. P. S., De Boeck, G. & Becker, K. (2011) Non-starch polysaccharides and their role in fsh nutrition – A review. Food Chemistry, 127, 1409–1426. https://doi.org/10.1016/j.foodchem.2011.02.042
Tacon, A. G. J., & Akiyama, D. M. (1997). Feed ingredients. In L. R. D’Abramo, D. E. Conklin, & D. M. Akiyama (Eds.), Advances in World aquaculture 6: Crustacean nutrition (pp. 411–472). Baton Rouge, LA: World Aquaculture Society.
Teles, A.O., Salas-Leiva, J., Alvarez-González, C. A., Gisbert, E., Ibarra-Castro, L., Urbiola, J. C. P., & Tovar-Ramírez, D. (2017). Histological study of the gastrointestinal tract in longfin yellowtail (Seriola rivoliana) larvae. Fish Physiology and Biochemistry, 43, 1613-1628. https://doi.org/10.1007/s10695-017-0397-5
Vega-Orellana, O. M., Fracalossi, D.M., & Sugai, J. K. (2006). Dourado (Salminus brasiliensis) larviculture: Weaning and ontogenetic development of digestive proteinases. Aquaculture, 252, 484-493. https://doi.org/10.1016/j.aquaculture.2005.07.002
Vizcaíno, A. J., López, G., Sáez, M.I., Jiménez, J.A., Barros, A., Hidalgo, L., Camacho-Rodríguez, J., Martínez, T. F., Cerón-García, M. C., & Alarcón, F. J. (2014). Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture, 431, 34-43. https://doi.org/10.1016/j.aquaculture.2014.05.010
Yúfera, M., & Darias, M. J. (2007). The onset of exogenous feeding in marine fish larvae. Aquaculture, 268, 53-63. https://doi.org/10.1016/j.aquaculture.2007.04.050
Zambonino Infante, J. L., Gisbert, E., Sarasquete, C., Navarro, I., Gutiérrez, J., & Cahu, C. (2008). Ontogeny and physiology of the digestive system of marine fish larvae. Feeding and digestive functions of fishes, 281-348.
Zambonino Infante, J. L., & Cahu, C. L. (2007). Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: Applications to diet formulation. Aquaculture, 268, 98-105.
Zhou, Z., Ringø, E., Olsen, R. E., & Song, S. K. (2017). Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: A review. Aquaculture Nutrition, 4(1):644-665.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Suzete Rossato ; João Radünz Neto; Alexandra Pretto ; Isadora Liberalesso de Freitas; Eduardo Cargnin Ferreira ; Rafael Lazzari
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.