Efectos de la nutrición materna en la preñez sobre la calidad de la progênie - una revisión
DOI:
https://doi.org/10.33448/rsd-v10i2.12654Palabras clave:
Miogénesis; Músculo esquelético; Novillos; Programación fetal; Ganado vacuno.Resumen
El objetivo del estudio fue, a través de una revisión de la literatura, evaluar los efectos de la nutrición de las vacas de carne durante la gestación sobre la calidad y desempeño de la progenie después del nacimiento. En los últimos años se han realizado numerosos estudios para evaluar los efectos de la nutrición materna durante la preñez (programación fetal) sobre la productividad de la progenie. A la vista de los resultados presentados, se aclara claramente que las condiciones nutricionales del útero gestante alteran la salud, fisiología, metabolismo y, en consecuencia, el desempeño posparto de la progenie de varias formas. Estos cambios pueden variar según el grado y la intensidad del desafío nutricional, el momento de este desafío durante la preñez y la capacidad de adaptación de las vacas gestantes para repartir los nutrientes al feto. La literatura sugiere que los efectos de la programación fetal se ven más fácilmente en los primeros meses de vida de la descendencia, desapareciendo con el avance de la edad, sin embargo, la restricción nutricional de la vaca durante la gestación también puede conducir a la formación de un individuo con mayor capacidad para adaptación y mejor preparada para sobrevivir en entornos más desafiantes en la vida posnatal. Además, la formación de un fenotipo “económico” puede resultar en un desempeño compensatorio durante la vida adulta de los terneros que han sufrido desafíos nutricionales durante la preñez.
Citas
Abuelo, A. (2020). Symposium review: Late-gestation maternal factors affecting the health and development of dairy calves. Journal of Dairy Science, 103(4), 3882-3893.
Bauman, D. E., & Currie, B. (1980). Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis e homeorhesis. Journal of Dairy Science, 63(9), 1514-1529.
Bohnert, D. W., Stalker, L. A., Mills, R. R., Nyman, A., Falck, S. J., & Cooke, R. F. (2013). Late gestation suplementation of beff cows differing in body condition score: Effects on cow and calf performance. Journal of Animal Science, 91(11), 5485-5491.
Brameld, J. M., Greenwood, P. L., & Bell, A. W. (2010). Biological Mechanisms of Fetal Development Relating to Postnatal Growth, Efficiency and Carcass Characteristics in Ruminants. Greenwood et al. (ed). Managing the prenatal environment to enhance livestock productivity. Dordrecht: Springer Science and Business Media, cap. 4, p. 93-120.
Camacho, L. E., Lemley, C. O., Dorsam, S. T., Swanson, K. C., & Vonnahme, K. A., (2018). Effects of maternal nutrient restriction followed by realimentation during early and mid-gestation in beef cows. II. Placental development, umbilical blood flow, and uterine blood flow responses to diet alterations. Theriogenology, 116, 1-11.
Chen, D., Li, W., Du, M., & Cao, B. (2019). Adipogenesis, fibrogenesis and myogenesis related gene expression in longissimus muscle of high and low marbling beef cattle. Livestock Science, 229, 188-193.
Du, M., Tong, J., Zhao, J., Underwood, K. R., Zhu, M., Ford, S. P., & Nathanielsz, P. W. (2010). Fetal programming of skeletal muscle development in ruminant animals. Journal Animal Science, 88, 51-60.
Du, M., Huang, Y., Das, A. K., Yang, Q., Duarte, M. S., Modson, M. V., & Zhu, M. J. (2013). Manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. Journal Animal Science, 91(3), 1419-1427.
Du, M., Wang, B., Fu, X., Yang, Q., & Zhu, M. (2015). Fetal programming in meat production. Meat Science, 109, 40-47.
Duarte, M. S., Gionbelli, M. P., Paulino, P. V. R., Serão, N. V. L., Martins, T. S., Tótaro, P. I. S., Neves, C. A., Valadares Filho, S. C., Dodson, M. V., Zhu, M., & Du, M. (2013). Effects of maternal nutrition on development of gastrointestinal tract of bovine fetus at different stages of gestation. Livestock Science, 153, 60-65.
Gaccioli, F., Lager, S., Powell, T. L., & Jansson, T. (2013). Placental transport in response to altered maternal nutrition. Journal of Developmental Origins of Health and Disease, 4, 101-115.
González-Recio, O., Ugarte, E.; & Bach, A. (2012). Trans-Generational Effect of Maternal Lactation during Pregnancy: A Holstein Cow Model. Plos One, 7(12), 1-7.
Greenwood, P. L., Thompsom, A. N., Ford, S. P. (2010). Posnatal consequences of the maternal environment and growth during prenatal life for productivity of ruminants. Greenwood et al. (ed). Managing the prenatal environment to enhance livestock productivity. Dordrecht: Springer Science and Business Media, cap. 1, p. 3-36.
Greenwood, D. P., & Bell, A. W. (2019). Developmental programming and growth of livestock tissues for meat production. Veterinary Clinics Food Animal, 35, 303-319.
Hyttel, P., Sinowatz, F., & Vejlsted, M. (2012). Embriologia veterinária. Rio de Janeiro: Elsevier.
Keomanivong, F. E., Camacho, L. E., Lemley, C. O., Kuemper, E. A., Yunusova, R. D., Borowicz, P. P., Vonnahme, K. A., Caton, J. S., & Swanson, K. C. (2016). Effects of realimentation after nutrient restriction during mid- to late gestation on pancreatic digestive enzymes, serum insulin and glucose levels, and insulin-containing cell cluster morphology. Animal Phisiology and Animal Nutrition, 101(3), 589-604.
LeMaster, C. T., Taylor, R. K., Ricks, R. E., & Long, N. M. (2017). The effects of late gestation maternal nutrient restriction whit or without protein supplementation on endocrine regulation of newborn and postnatal beef calves. Theriogenology, 87, 64-71.
Long, N. M., Vonnahme, K. A., Hess, B. W., Nathanielsz, P. W., & Ford, S. P. (2009). Effects of early gestational undernutrition on fetal growth, organ development, and placentomal composition in the bovine. Journal of Animal Science, 87, 1950-1959.
Maresca, S., Lopes Valiente, S., Rodrigues, A. M., Long, N. M., Pavan, E., & Quintans, G. (2018). Effect of protein restriction of bovine dams during late gestation on offspring postnatal growth, glucose-insulin metabolism and IGF-1 concentration. Livestock Science, 212, 120-126.
Maresca, S., López Valiente, S., Rodriguez, A. M., Testa, L. M., Long, N. M., Quintans, G. I., Pavan, E. (2019). The influence of protein restriction during mid- to late gestation on beef offspring growth, carcass characteristic and meat quality. Meat Science, 153, 103-108.
Marques, R. S., Cooke, R. F., Rodrigues, M. C., Moriel, P., & Bohnert, D. W. (2016). Impacts of cow body condition score during gestation on weaning performance of the offspring. Livestock Science, 191, 174-178.
McCarty, K. J., Washburn, J. L., Taylor, R. K., & Long, N. M. (2020). The effects of early or mid-gestation nutrient restriction on bovine fetal pancreatic development. Domestic Animal Endocrinology, 70, 1-6.
Mendes, L. C. M. (2016). Trabalho de Conclusão de Curso em Zootecnia – Universidade Federal do Rio Grande do Sul, Porto Alegre, RS.
Mohrhauser, D. A., Taylor, A. R., Underwood, K. R., Pritchard, R. H., Wertz-Lutz, A. E., & Blair, D. A. (2015a). The influence of maternal energy status during mid-gestation on beef offspring tenderness, muscle characteristics, and gene expression. Meat Science, 110, 201-211.
Mohrhauser, D. A., Taylor, A. R., Underwood, K. R., Pritchard, R. H., Wertz-Lutz, A. E., & Blair, D. A. (2015b). The influence of maternal energy status during midgestation on beef offspring carcass characteristics and meat quality. Journal of Animal Science, 93, 786-793.
Muhlhauser, B. S., Duffield, J. A., & McMillen I. C. (2007). Increased Maternal Nutrition Increases Leptin Expression in Perirenal and Subcutaneous Adipose Tissue in the Postnatal Lamb. Endocrinology, 148, (12), 6157-6163.
Mulliniks, J. T., Mathis, C. P., Cox, S. H., & Petersen, M. K. (2013). Supplementation strategy during late gestation alters steer progeny health in the feedlot without affectingcow performance. Animal Feed Science and Technology, 185, 126-132.
Perry, V. E. A., Copping, K. J., Miguel-Pacheco, G., & Hernandez-Mendrano, J. (2019). The effects of developmental programming upon neonatal mortality. Veterinary Clinics Food Animal, 35, 289-302.
Ramírez, M., Testa, L. M., López Valiente, S., Latorre, M. E., Long, N. M., Rodriguez, A. M., Pavan, E., & Maresca, S. (2020). Maternal energy status during late gestation: Effects on growth performance, carcass characteristics and meat quality of steers progeny. Meat Science, 164, 1-7.
Reynolds, L. P., Borowicz, P. P., Caton, J. S., Crouse, M. S., Dahlen C. R., & Ward, A. K. (2019). Developmental Programming of Fetal Growth and Development. Veterinary Clinics Food Animal, 35(2), 229-247.
Symonds, M. E., Sebert, S. P., & Budge, H. (2010). Nutritional regulation of fetal growth and implications for productive life in ruminants. Animal, 4(7), 1075-1083.
Taylor, A. R., Mohrhauser, D. A., Pritchard, R. H., Underwood, K. R., Wertz-Lutz, A. E., & Blair, D. A. (2016). The influence of maternal energy status during mid-gestation on growth, cattle performance, and the immune response in the resultant beef progeny. The Professional Animal Scientist, 32, 389-399.
Tsuneda, P. P., Hatamoto- Zervoudakis, L. K., Duarte Júnior, M. F., Silva, L. E. S., Delbem, R. A., & Motheo, T. F. (2017). Efeitos da nutrição materna sobre o desenvolvimento e performance reprodutiva da prole de ruminantes. Investigação, 16(1), 56-61.
Vaag, A. A., Grunnet, L. G., Arora, G. P., & Brons, C. (2012). The thrifty phenotype hypothesis revisited. Diabetologia, 55, 2085-2088.
Zhu, M. J., Ford, S. P., Means, W. J., Hess, B. W., Nathaniels, P. W., & Du, M. (2006). Maternal nutrient restriction affects properties of skeletal muscle in offspring. The Journal of Physiology, 575(1), 241-250.
Webb, M. J., Block, J. J., Funstons, R. N., Underwood, K. R., Legako, J. F., Harty, A. A., Slaverson, R. R., Olson, K. C., & Blair, A. D. (2019). Influence of maternal protein restriction in primiparous heifers during mid and/or late-gestation on meat quality and fatty acid profile of progeny. Meat Science, 152, 31-37.
Wilson, T. B., Faulkner, D. B., & Shike, D. W. (2016). Influence of prepartum dietary on beef cow performance and calf growth and carcass characteristics. Livestock Science, 184, 21-27.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 John Lenon Klein; Diego Soares Machado; Sander Martinho Adams; Dari Celestino Alves Filho; Ivan Luiz Brondani
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.