Fideos instantáneos alcalinos: uso de sales alcalinas para reducir el contenido sodio y evaluación de la bioaccesibilidad del calcio
DOI:
https://doi.org/10.33448/rsd-v10i2.12778Palabras clave:
Producto de cereales; Bioaccesibilidad mineral; Digestión in vitro; Calcio; Sodio.Resumen
Originarios de las naciones orientales, los fideos instantáneos han sido aceptados debido a su practicidad y bajo costo. Sin embargo, su alto contenido en sodio puede provocar problemas de salud. El presente estudio tuvo como objetivo reducir el contenido de sodio y aumentar los niveles de calcio en los fideos. Para ello, se estudiaron una muestra control (N1: K2CO3 + Na2CO3) y tres tratamientos con adición de carbonato de calcio en combinación con sales alcalinas de carbonato de potasio y sodio (N2:K2CO3 + CaCO3; N3:Na2CO3 + CaCO3; y N4:CaCO3). Se investigaron dos métodos de hidratación, asimismo, se realizó la caracterización tecnológica y se determinó la bioaccesibilidad del calcio de las diferentes formulaciones de fideos. N4 no encajó en la categoría de fideos alcalinos debido a su pH neutro. N2 y N4 experimentaron una reducción alrededor del 28% de sodio y un aumento significativo del contenido y bioaccesibilidad de calcio. Se observaron cambios significativos en los fideos elaborados con la adición de las diferentes sales alcalinas, como un color amarillo claro y mejor textura en comparación al control, lo que puede ser un aspecto positivo dado que los productos con reducción nutrientes suelen presentar una coloración diferenciada. Por tanto, el uso de carbonato de calcio puede ser una alternativa prometedora para aumentar la ingesta de Ca y reducir el contenido de sodio en fideos instantáneos.
Citas
AACCI. (2010). Approved Methods of Analysis. AACC International.
ABIMAPI. (2020). Associação Brasileira das Indústrias de Biscoitos, Massas Alimentícias e Pães e Bolos Industrializados.
Afridi, H. I., Kazi, T. G., Kazi, N., Kandhro, G. A., Baig, J. A., Shah, A. Q., Khan, S., Kolachi, N. F., Wadhwa, S. K., & Shah, F. (2011). Evaluation of status of calcium, magnesium, potassium, and sodium levels in biological samples in children of different age groups with normal vision and night blindness. Clinical Laboratory, 57(7–8), 559–574.
Alegría-Torán, A., Barberá‐Sáez, R., & Cilla‐Tatay, A. (2015). Bioavailability of minerals in foods. In M. de la G. and S. Garrigues (Ed.), Handbook of Mineral Elements in Food. https://doi.org/doi:10.1002/9781118654316.ch3
Asenstorfer, R. E., Wang, Y., & Mares, D. J. (2006). Chemical structure of flavonoid compounds in wheat (Triticum aestivum L.) flour that contribute to the yellow colour of Asian alkaline noodles. Journal of Cereal Science, 43(1), 108–119. https://doi.org/10.1016/j.jcs.2005.09.001
Brasil, Ministério da Agricultura, P. e do A. (2000). Regulamentos Técnicos de Identidade e Qualidade de Almôndega, de Apresuntado, de Fiambre, de Hamburguer, de Kibe, de Presunto Cozido e de Presunto. IN 20/2000 (p. 15). Ministério da Agricultura, Pecuária e Abastecimento.
Brasil. (2010). Aditivos Alimentares autorizados para uso segundo as Boas Práticas de Fabricação (BPF). 27.
Cámara, F., Amaro, M. A., Barberá, R., & Clemente, G. (2005). Bioaccessibility of minerals in school meals: Comparison between dialysis and solubility methods. Food Chemistry, 92(3), 481–489. https://doi.org/10.1016/j.foodchem.2004.08.009
Fu, B. X. (2008). Asian noodles: History, classification, raw materials, and processing. Food Research International, 41(9), 888–902. https://doi.org/10.1016/j.foodres.2007.11.007
Goss, S. L., Lemons, K. A., Kerstetter, J. E., & Bogner, R. H. (2007). Determination of calcium salt solubility with changes in pH and P CO2 , simulating varying gastrointestinal environments. Journal of Pharmacy and Pharmacology, 59(11), 1485–1492. https://doi.org/10.1211/jpp.59.11.0004
Gropper, S.S; Smith, J.L; Groff, J. L. (2011). Advanced nutrition and human metabolism (5a ed.).
Gulia, N., Dhaka, V., & Khatkar, B. S. (2014). Instant Noodles: Processing, Quality, and Nutritional Aspects. In Critical Reviews in Food Science and Nutrition. 54(10), 1386–1399. https://doi.org/10.1080/10408398.2011.638227
Gulia, N., & Khatkar, B. S. (2013). Effect of processing variables on the oil uptake, textural properties and cooking quality of instant fried noodles. Journal of Food Quality, 36(3), 181–189. https://doi.org/10.1111/jfq.12029
Han, L., Lu, Z., Hao, X., Cheng, Y., & Li, L. (2012). Impact of calcium hydroxide on the textural properties of buckwheat noodles. Journal of Texture Studies, 43(3), 227–234. https://doi.org/10.1111/j.1745-4603.2011.00331.x
Hobbs, J. E. (2020). Food supply chains during the COVID‐19 pandemic. Canadian Journal of Agricultural Economics/Revue Canadienne d’agroeconomie, cjag.12237. https://doi.org/10.1111/cjag.12237
Hoover, E. (2020). Native food systems impacted by COVID. Agriculture and Human Values. https://doi.org/10.1007/s10460-020-10089-7
Hou, G. (2001). Oriental noodles. In Advances in Food and Nutrition Research (Vol. 43, Issue C, pp. 141–193). https://doi.org/10.1016/S1043-4526(01)43004-X
Hou, G. G. (2010). Asian Noodles: Science, Technology, and Processing. In G. G. Hou (Ed.), Asian Noodles: Science, Technology, and Processing. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470634370
Hur, S. J., Lim, B. O., Decker, E. A., & McClements, D. J. (2011). In vitro human digestion models for food applications. Food Chemistry, 125(1), 1–12. https://doi.org/10.1016/j.foodchem.2010.08.036
Ismailoglu, S. O., & Basman, A. (2016). Physicochemical properties of infrared heat-moisture treated wheat starch. Starch/Staerke, 68(1–2), 67–75. https://doi.org/10.1002/star.201500160
Kajishima, S., Pumar, M., & Germani, R. (2003). Efeito de adição de diferentes sais de cálcio nas características da massa e na elaboração de pão francês. Ciência e Tecnologia de Alimentos, 23(2). https://doi.org/10.1590/s0101-20612003000200021
Kruger, J. E., Matsuo, R. B., & Dick, J. W. (1996). Pasta and Noodle Technology. American Association of Cereal Chemists.
Lorieau, L., Le Roux, L., Gaucheron, F., Ligneul, A., Hazart, E., Dupont, D., & Floury, J. (2018). Bioaccessibility of four calcium sources in different whey-based dairy matrices assessed by in vitro digestion. Food Chemistry, 245, 454–462. https://doi.org/10.1016/j.foodchem.2017.10.108
Marcovecchio, J. E., De Marco, S. G., Buzzi, N. S., Botté, S. E., Labudia, A. C., La Colla, N., & Severini, M. D. F. (2015). Fish and seafood. In Handbook of Mineral Elements in Food (pp. 621–643). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118654316.ch27
Miller, D. D., Schricker, B. R., Rasmussen, R. R., & Van Campen, D. (1981). An in vitro method for estimation of iron availability from meals. The American Journal of Clinical Nutrition, 34(10), 2248–2256. https://doi.org/10.1093/ajcn/34.10.2248
NEPA. (2011). Tabela brasileira de composição de alimentos. NEPA - Unicamp, 161. http://www.unicamp.br/nepa/taco/
Nilson, E. A. F., Jaime, P. C., & De Oliveira Resende, D. (2012). Iniciativas desenvolvidas no Brasil para a redução do teor de sódio em alimentos processados. Revista Panamericana de Salud Publica/Pan American Journal of Public Health, 32(4), 287–292. https://doi.org/10.1590/S1020-49892012001000007
Orlando, E. A., Rebellato, A. P., Silva, J. G. S., Andrade, G. C., & Pallone, J. A. L. (2020). Sodium in different processed and packaged foods: Method validation and an estimative on the consumption. Food Research International, 129, 108836. https://doi.org/10.1016/j.foodres.2019.108836
Park, J., Lee, J. S., Jang, Y. A., Chung, H. R., & Kim, J. (2011). A comparison of food and nutrient intake between instant noodle consumers and non-instant noodle consumers in Korean adults. Nutrition Research and Practice, 5(5), 443–449. https://doi.org/10.4162/nrp.2011.5.5.443
Paula, L. N. de. (2013). Enriquecimento do café torrado e moído com sais de cálcio. Universidade Tecnológica Federal do Paraná.
Perales, S., Barberá, R., Lagarda, M. J., & Farré, R. (2006). Fortification of milk with calcium: Effect on calcium bioavailability and interactions with iron and zinc. Journal of Agricultural and Food Chemistry, 54(13), 4901–4906. https://doi.org/10.1021/jf0601214
Pongpichaiudom, A., & Songsermpong, S. (2018). Characterization of frying, microwave-drying, infrared-drying, and hot-air drying on protein-enriched, instant noodle microstructure, and qualities. Journal of Food Processing and Preservation, 42(3), e13560. https://doi.org/10.1111/jfpp.13560
Rebellato, A. P., Pacheco, B. C., Prado, J. P., & Lima Pallone, J. A. (2015). Iron in fortified biscuits: A simple method for its quantification, bioaccessibility study and physicochemical quality. Food Research International, 77, 385–391. https://doi.org/10.1016/j.foodres.2015.09.028
Sahuquillo, A., Barbera, R., & Farre, R. (2003). Bioaccessibility of calcium, iron and zinc from three legume samples. Nahrung, 47(6), 438–441. https://doi.org/10.1002/food.200390097
Silva, J. G. S., Rebellato, A. P., Caramês, E. T. dos S., Greiner, R., & Pallone, J. A. L. (2020). In vitro digestion effect on mineral bioaccessibility and antioxidant bioactive compounds of plant-based beverages. Food Research International, 130, 108993. https://doi.org/10.1016/j.foodres.2020.108993
Smith, J., & Hong-Shum, L. (2011). Gases. In Food Additives Data Book (pp. 581–596). Wiley-Blackwell. https://doi.org/10.1002/9781444397741.ch8
Tan, H. Z., Li, Z. G., & Tan, B. (2009). Starch noodles: History, classification, materials, processing, structure, nutrition, quality evaluating and improving. In Food Research International (Vol. 42, Issues 5–6, pp. 551–576). https://doi.org/10.1016/j.foodres.2009.02.015
Umbelino, D. C., Rossi, E. A., Cardello, H. M. A. B., & Lepera, J. S. (2001). Sensory and technological aspects of calcium enrichment of a soy-whey-yogurt. Ciência e Tecnologia de Alimentos, 21(3). https://doi.org/10.1590/S0101-20612001000300005
Wang, H. (2016). Discoloration of dough for oriental noodles. Cereal Chemistry., 93(2), 198–205. https://doi.org/10.1016/B978-012119062-0/50001-2
Wang, L., Hou, G. G., Hsu, Y. H., & Zhou, L. (2011). Effect of phosphate salts on the Korean non-fried instant noodle quality. Journal of Cereal Science, 54(3), 506–512. https://doi.org/10.1016/j.jcs.2011.09.008
WINA. (2020). World Instant Noodles Association.
Ye, Y., Zhang, Y., Yan, J., Zhang, Y., He, Z., Huang, S., & Quail, K. J. (2009). Effects of flour extraction rate, added water, and salt on color and texture of Chinese white noodles. Cereal Chemistry, 86(4), 477–485. https://doi.org/10.1094/CCHEM-86-4-0477
Yu, L. J., & Ngadi, M. O. (2004). Textural and other quality properties of instant fried noodles as affected by some ingredients. Cereal Chemistry, 81(6), 772–776. https://doi.org/10.1094/CCHEM.2004.81.6.772
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Ana Paula Rebellato; Priscila Ferreira Tavares; Guilherme Neves Trindade; Juliana A. Lima Pallone; Pedro H. Campelo; Maria Teresa Pedrosa Silva Clerici
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.