Fideos instantáneos alcalinos: uso de sales alcalinas para reducir el contenido sodio y evaluación de la bioaccesibilidad del calcio

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i2.12778

Palabras clave:

Producto de cereales; Bioaccesibilidad mineral; Digestión in vitro; Calcio; Sodio.

Resumen

Originarios de las naciones orientales, los fideos instantáneos han sido aceptados debido a su practicidad y bajo costo. Sin embargo, su alto contenido en sodio puede provocar problemas de salud. El presente estudio tuvo como objetivo reducir el contenido de sodio y aumentar los niveles de calcio en los fideos. Para ello, se estudiaron una muestra control (N1: K2CO3 + Na2CO3) y tres tratamientos con adición de carbonato de calcio en combinación con sales alcalinas de carbonato de potasio y sodio (N2:K2CO3 + CaCO3; N3:Na2CO3 + CaCO3; y N4:CaCO3). Se investigaron dos métodos de hidratación, asimismo, se realizó la caracterización tecnológica y se determinó la bioaccesibilidad del calcio de las diferentes formulaciones de fideos. N4 no encajó en la categoría de fideos alcalinos debido a su pH neutro. N2 y N4 experimentaron una reducción alrededor del 28% de sodio y un aumento significativo del contenido y bioaccesibilidad de calcio. Se observaron cambios significativos en los fideos elaborados con la adición de las diferentes sales alcalinas, como un color amarillo claro y mejor textura en comparación al control, lo que puede ser un aspecto positivo dado que los productos con reducción nutrientes suelen presentar una coloración diferenciada. Por tanto, el uso de carbonato de calcio puede ser una alternativa prometedora para aumentar la ingesta de Ca y reducir el contenido de sodio en fideos instantáneos.

Citas

AACCI. (2010). Approved Methods of Analysis. AACC International.

ABIMAPI. (2020). Associação Brasileira das Indústrias de Biscoitos, Massas Alimentícias e Pães e Bolos Industrializados.

Afridi, H. I., Kazi, T. G., Kazi, N., Kandhro, G. A., Baig, J. A., Shah, A. Q., Khan, S., Kolachi, N. F., Wadhwa, S. K., & Shah, F. (2011). Evaluation of status of calcium, magnesium, potassium, and sodium levels in biological samples in children of different age groups with normal vision and night blindness. Clinical Laboratory, 57(7–8), 559–574.

Alegría-Torán, A., Barberá‐Sáez, R., & Cilla‐Tatay, A. (2015). Bioavailability of minerals in foods. In M. de la G. and S. Garrigues (Ed.), Handbook of Mineral Elements in Food. https://doi.org/doi:10.1002/9781118654316.ch3

Asenstorfer, R. E., Wang, Y., & Mares, D. J. (2006). Chemical structure of flavonoid compounds in wheat (Triticum aestivum L.) flour that contribute to the yellow colour of Asian alkaline noodles. Journal of Cereal Science, 43(1), 108–119. https://doi.org/10.1016/j.jcs.2005.09.001

Brasil, Ministério da Agricultura, P. e do A. (2000). Regulamentos Técnicos de Identidade e Qualidade de Almôndega, de Apresuntado, de Fiambre, de Hamburguer, de Kibe, de Presunto Cozido e de Presunto. IN 20/2000 (p. 15). Ministério da Agricultura, Pecuária e Abastecimento.

Brasil. (2010). Aditivos Alimentares autorizados para uso segundo as Boas Práticas de Fabricação (BPF). 27.

Cámara, F., Amaro, M. A., Barberá, R., & Clemente, G. (2005). Bioaccessibility of minerals in school meals: Comparison between dialysis and solubility methods. Food Chemistry, 92(3), 481–489. https://doi.org/10.1016/j.foodchem.2004.08.009

Fu, B. X. (2008). Asian noodles: History, classification, raw materials, and processing. Food Research International, 41(9), 888–902. https://doi.org/10.1016/j.foodres.2007.11.007

Goss, S. L., Lemons, K. A., Kerstetter, J. E., & Bogner, R. H. (2007). Determination of calcium salt solubility with changes in pH and P CO2 , simulating varying gastrointestinal environments. Journal of Pharmacy and Pharmacology, 59(11), 1485–1492. https://doi.org/10.1211/jpp.59.11.0004

Gropper, S.S; Smith, J.L; Groff, J. L. (2011). Advanced nutrition and human metabolism (5a ed.).

Gulia, N., Dhaka, V., & Khatkar, B. S. (2014). Instant Noodles: Processing, Quality, and Nutritional Aspects. In Critical Reviews in Food Science and Nutrition. 54(10), 1386–1399. https://doi.org/10.1080/10408398.2011.638227

Gulia, N., & Khatkar, B. S. (2013). Effect of processing variables on the oil uptake, textural properties and cooking quality of instant fried noodles. Journal of Food Quality, 36(3), 181–189. https://doi.org/10.1111/jfq.12029

Han, L., Lu, Z., Hao, X., Cheng, Y., & Li, L. (2012). Impact of calcium hydroxide on the textural properties of buckwheat noodles. Journal of Texture Studies, 43(3), 227–234. https://doi.org/10.1111/j.1745-4603.2011.00331.x

Hobbs, J. E. (2020). Food supply chains during the COVID‐19 pandemic. Canadian Journal of Agricultural Economics/Revue Canadienne d’agroeconomie, cjag.12237. https://doi.org/10.1111/cjag.12237

Hoover, E. (2020). Native food systems impacted by COVID. Agriculture and Human Values. https://doi.org/10.1007/s10460-020-10089-7

Hou, G. (2001). Oriental noodles. In Advances in Food and Nutrition Research (Vol. 43, Issue C, pp. 141–193). https://doi.org/10.1016/S1043-4526(01)43004-X

Hou, G. G. (2010). Asian Noodles: Science, Technology, and Processing. In G. G. Hou (Ed.), Asian Noodles: Science, Technology, and Processing. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470634370

Hur, S. J., Lim, B. O., Decker, E. A., & McClements, D. J. (2011). In vitro human digestion models for food applications. Food Chemistry, 125(1), 1–12. https://doi.org/10.1016/j.foodchem.2010.08.036

Ismailoglu, S. O., & Basman, A. (2016). Physicochemical properties of infrared heat-moisture treated wheat starch. Starch/Staerke, 68(1–2), 67–75. https://doi.org/10.1002/star.201500160

Kajishima, S., Pumar, M., & Germani, R. (2003). Efeito de adição de diferentes sais de cálcio nas características da massa e na elaboração de pão francês. Ciência e Tecnologia de Alimentos, 23(2). https://doi.org/10.1590/s0101-20612003000200021

Kruger, J. E., Matsuo, R. B., & Dick, J. W. (1996). Pasta and Noodle Technology. American Association of Cereal Chemists.

Lorieau, L., Le Roux, L., Gaucheron, F., Ligneul, A., Hazart, E., Dupont, D., & Floury, J. (2018). Bioaccessibility of four calcium sources in different whey-based dairy matrices assessed by in vitro digestion. Food Chemistry, 245, 454–462. https://doi.org/10.1016/j.foodchem.2017.10.108

Marcovecchio, J. E., De Marco, S. G., Buzzi, N. S., Botté, S. E., Labudia, A. C., La Colla, N., & Severini, M. D. F. (2015). Fish and seafood. In Handbook of Mineral Elements in Food (pp. 621–643). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118654316.ch27

Miller, D. D., Schricker, B. R., Rasmussen, R. R., & Van Campen, D. (1981). An in vitro method for estimation of iron availability from meals. The American Journal of Clinical Nutrition, 34(10), 2248–2256. https://doi.org/10.1093/ajcn/34.10.2248

NEPA. (2011). Tabela brasileira de composição de alimentos. NEPA - Unicamp, 161. http://www.unicamp.br/nepa/taco/

Nilson, E. A. F., Jaime, P. C., & De Oliveira Resende, D. (2012). Iniciativas desenvolvidas no Brasil para a redução do teor de sódio em alimentos processados. Revista Panamericana de Salud Publica/Pan American Journal of Public Health, 32(4), 287–292. https://doi.org/10.1590/S1020-49892012001000007

Orlando, E. A., Rebellato, A. P., Silva, J. G. S., Andrade, G. C., & Pallone, J. A. L. (2020). Sodium in different processed and packaged foods: Method validation and an estimative on the consumption. Food Research International, 129, 108836. https://doi.org/10.1016/j.foodres.2019.108836

Park, J., Lee, J. S., Jang, Y. A., Chung, H. R., & Kim, J. (2011). A comparison of food and nutrient intake between instant noodle consumers and non-instant noodle consumers in Korean adults. Nutrition Research and Practice, 5(5), 443–449. https://doi.org/10.4162/nrp.2011.5.5.443

Paula, L. N. de. (2013). Enriquecimento do café torrado e moído com sais de cálcio. Universidade Tecnológica Federal do Paraná.

Perales, S., Barberá, R., Lagarda, M. J., & Farré, R. (2006). Fortification of milk with calcium: Effect on calcium bioavailability and interactions with iron and zinc. Journal of Agricultural and Food Chemistry, 54(13), 4901–4906. https://doi.org/10.1021/jf0601214

Pongpichaiudom, A., & Songsermpong, S. (2018). Characterization of frying, microwave-drying, infrared-drying, and hot-air drying on protein-enriched, instant noodle microstructure, and qualities. Journal of Food Processing and Preservation, 42(3), e13560. https://doi.org/10.1111/jfpp.13560

Rebellato, A. P., Pacheco, B. C., Prado, J. P., & Lima Pallone, J. A. (2015). Iron in fortified biscuits: A simple method for its quantification, bioaccessibility study and physicochemical quality. Food Research International, 77, 385–391. https://doi.org/10.1016/j.foodres.2015.09.028

Sahuquillo, A., Barbera, R., & Farre, R. (2003). Bioaccessibility of calcium, iron and zinc from three legume samples. Nahrung, 47(6), 438–441. https://doi.org/10.1002/food.200390097

Silva, J. G. S., Rebellato, A. P., Caramês, E. T. dos S., Greiner, R., & Pallone, J. A. L. (2020). In vitro digestion effect on mineral bioaccessibility and antioxidant bioactive compounds of plant-based beverages. Food Research International, 130, 108993. https://doi.org/10.1016/j.foodres.2020.108993

Smith, J., & Hong-Shum, L. (2011). Gases. In Food Additives Data Book (pp. 581–596). Wiley-Blackwell. https://doi.org/10.1002/9781444397741.ch8

Tan, H. Z., Li, Z. G., & Tan, B. (2009). Starch noodles: History, classification, materials, processing, structure, nutrition, quality evaluating and improving. In Food Research International (Vol. 42, Issues 5–6, pp. 551–576). https://doi.org/10.1016/j.foodres.2009.02.015

Umbelino, D. C., Rossi, E. A., Cardello, H. M. A. B., & Lepera, J. S. (2001). Sensory and technological aspects of calcium enrichment of a soy-whey-yogurt. Ciência e Tecnologia de Alimentos, 21(3). https://doi.org/10.1590/S0101-20612001000300005

Wang, H. (2016). Discoloration of dough for oriental noodles. Cereal Chemistry., 93(2), 198–205. https://doi.org/10.1016/B978-012119062-0/50001-2

Wang, L., Hou, G. G., Hsu, Y. H., & Zhou, L. (2011). Effect of phosphate salts on the Korean non-fried instant noodle quality. Journal of Cereal Science, 54(3), 506–512. https://doi.org/10.1016/j.jcs.2011.09.008

WINA. (2020). World Instant Noodles Association.

Ye, Y., Zhang, Y., Yan, J., Zhang, Y., He, Z., Huang, S., & Quail, K. J. (2009). Effects of flour extraction rate, added water, and salt on color and texture of Chinese white noodles. Cereal Chemistry, 86(4), 477–485. https://doi.org/10.1094/CCHEM-86-4-0477

Yu, L. J., & Ngadi, M. O. (2004). Textural and other quality properties of instant fried noodles as affected by some ingredients. Cereal Chemistry, 81(6), 772–776. https://doi.org/10.1094/CCHEM.2004.81.6.772

Descargas

Publicado

27/02/2021

Cómo citar

REBELLATO, A. P.; TAVARES, P. F.; TRINDADE, G. N.; PALLONE, J. A. L.; CAMPELO, P. H.; CLERICI, M. T. P. S. Fideos instantáneos alcalinos: uso de sales alcalinas para reducir el contenido sodio y evaluación de la bioaccesibilidad del calcio. Research, Society and Development, [S. l.], v. 10, n. 2, p. e51210212778, 2021. DOI: 10.33448/rsd-v10i2.12778. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12778. Acesso em: 3 jul. 2024.

Número

Sección

Ciencias Agrarias y Biológicas