Desarrollo de transportadores de oxígeno a base de CuO soportado por diatomita y caolín para combustión por recirculación química

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i4.12831

Palabras clave:

Captura de CO2; Combustión con transportadores sólidos de oxígeno; Transportadores de oxigênio; Diatomita; Caolín.

Resumen

La tecnología de combustión con transportadores sólidos de oxígeno (CLC) ha surgido como una alternativa prometedora capaz de restringir los efectos del calentamiento global por emisiones de gases antropogénicos, principalmente CO2, a través de su captura inherente. Este estudio tiene como objetivo sintetizar y evaluar transportadores de oxígeno basados ​​en Cu apoyados en materiales naturales como la diatomita y el caolín, utilizando el incipiente método de impregnación húmeda para aplicaciones en procesos CLC. Los portadores de oxígeno se caracterizaron por difracción de rayos-X (XRD), reducción com temperatura programada (TPR) y microscopía electrónica de barrido con espectroscopía de energía superficial dispersiva de rayos-X (SEM-EDS). La resistencia mecánica de los portadores de oxígeno se determinó después del procedimiento de sinterización, lo que resultó en una alta fuerza de trituración. La reactividad de los portadores de oxígeno se evaluó en termobalance con los gases CH4 y H2. Se analizaron diferentes vías de reacción durante los ciclos redox: reducción total directa de CuO a Cu0 para Cu-K y reducción parcial de CuO a Cu2O y CuO para Cu-D. Sin embargo, la mayor reactividad y velocidad de reacción se logró para Cu-D debido a la estructura porosa de la diatomita, la composición química y la interacción resultante entre CuO y el soporte. Las pruebas de reactividad con gas H2 mostraron una mayor tasa de conversión y una mayor estabilidad entre ciclos para ambos transportadores de oxígeno. Así, el contenido reducible de CuO presente en Cu-D durante la prueba de reactividad con H2 como gas combustible fue ideal para obtener una alta conversión de sólidos, con tendencia a una mayor estabilidad y mayor velocidad de reacción.

Citas

Abad, A., Cuadrat, A., Mendiara, T., García-Labiano, F., Gayán, P., De Diego, L. F., & Adánez, J. (2012). Low-cost Fe-based oxygen carrier materials for the iG-CLC process with coal. 2. Industrial and Engineering Chemistry Research, 51(50), 16230–16241. https://doi.org/10.1021/ie302158q.

Adánez-Rubio, I., Arjmand, M., Leion, H., Gayán, P., Abad, A., Mattisson, T., & Lyngfelt, A. (2013). Investigation of combined supports for cu-based oxygen carriers for chemical-looping with oxygen uncoupling (CLOU). Energy and Fuels, 27(7), 3918–3927. https://doi.org/10.1021/ef401161s.

Adánez-Rubio, I., Gayán, P., García-Labiano, F., de Diego, L. F., Adánez, J., & Abad, A. (2011). Development of CuO-based oxygen-carrier materials suitable for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Energy Procedia, 4, 417–424. https://doi.org/10.1016/J.EGYPRO.2011.01.070.

Adánez-Rubio, I., Izquierdo, M. T., Abad, A., Gayán, P., de Diego, L. F., & Adánez, J. (2017). Spray granulated Cu-Mn oxygen carrier for chemical looping with oxygen uncoupling (CLOU) process. International Journal of Greenhouse Gas Control, 65, 76–85. https://doi.org/10.1016/J.IJGGC.2017.08.021.

Adánez-Rubio, I., Pérez-Astray, A., Mendiara, T., Izquierdo, M. T., Abad, A., Gayán, P., … Adánez, J. (2018). Chemical looping combustion of biomass: CLOU experiments with a Cu-Mn mixed oxide. Fuel Processing Technology, 172(January), 179–186. https://doi.org/10.1016/j.fuproc.2017.12.010.

Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., & De Diego, L. F. (2012). Progress in chemical-looping combustion and reforming technologies. Progress in Energy and Combustion Science, 38(2), 215–282. https://doi.org/10.1016/j.pecs.2011.09.001.

Adánez, J., Abad, A., Mendiara, T., Gayán, P., de Diego, L. F., & García-Labiano, F. (2018). Chemical looping combustion of solid fuels. Progress in Energy and Combustion Science, Vol. 65, pp. 6–66. https://doi.org/10.1016/j.pecs.2017.07.005.

Adánez, J., De Diego, L. F., García-Labiano, F., Gayán, P., Abad, A., & Palacios, J. M. (2004). Selection of oxygen carriers for chemical-looping combustion. Energy and Fuels, 18(2), 371–377. https://doi.org/10.1021/ef0301452.

de Diego, L. F., Gayán, P., García-Labiano, F., Celaya, J., Abad, A., & Adánez, J. (2005). Impregnated CuO/Al2O3 oxygen carriers for chemical-looping combustion: Avoiding fluidized bed agglomeration. Energy and Fuels, 19(5), 1850–1856. https://doi.org/10.1021/ef050052f.

De Freitas, V. A. A., Lima, J. S. V., & Da Couceiro, P. R. C. (2011). Caracterização e análise estrutural da hidroxisodalita sintetizada a partir de amostras de solo Amazônico. Ceramica, 57(343), 281–287.

Fernandes, T., Hacon, S. S., Novais, J. W. Z., Siguarezi, S. B., Silva, C. J., Alcântara, L. C. S., Curvo, A. D., Fernandes, T. (2019). Poluição do ar e efeitos na saúde de crianças na Amazônia paraense: uma análise bibliométrica. Pesquisa, Sociedade e Desenvolvimento, 8 (4), e4984907. http://dx.doi.org/10.33448/rsd-v8i4.907.

Forero, C. R., Gayán, P., de Diego, L. F., Abad, A., García-Labiano, F., & Adánez, J. (2009). Syngas combustion in a 500 Wth Chemical-Looping Combustion system using an impregnated Cu-based oxygen carrier. Fuel Processing Technology, 90(12), 1471–1479. https://doi.org/10.1016/j.fuproc.2009.07.001.

García-Labiano, F., de Diego, L. F., Adánez, J., Abad, A., & Gayán, P. (2004). Reduction and Oxidation Kinetics of a Copper-Based Oxygen Carrier Prepared by Impregnation for Chemical-Looping Combustion. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/ie0493311.

Gayán, P., Adánez-Rubio, I., Abad, A., De Diego, L. F., García-Labiano, F., & Adánez, J. (2012). Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Fuel, 96, 226–238. https://doi.org/10.1016/j.fuel.2012.01.021.

Gomes, D. S., Barbosa, A. S., Santos, T. M., Santos, S. K., Sales Silva, J. H. C., Aquino, I. S. (2021). Cinética de liberação de CO2 e decomposição da fitomassa em sistemas de uso e manejo do solo. Pesquisa, Sociedade e Desenvolvimento, 10 (1). e9810111413. http://dx.doi.org/10.33448/rsd-v10i1.11413.

Johansson, M., Mattisson, T., & Lyngfelt, A. (2004). Investigation of FeO with MgAlO for Chemical-Looping Combustion Investigation of Fe2O3 with MgAl 2 O 4 for Chemical-Looping Combustion. 43(22), 6978–6987. https://doi.org/10.1021/ie049813c.

Liu, J., Zheng, C., Yue, J., & Xu, G. (2019). Synthesis, characterization and catalytic methanation performance of modified kaolin-supported Ni-based catalysts. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/J.CJCHE.2019.04.009.

Ma, J., Tian, X., Zhao, H., Bhattacharya, S., Rajendran, S., & Zheng, C. (2017). Investigation of Two Hematites as Oxygen Carrier and Two Low-Rank Coals as Fuel in Chemical Looping Combustion. Energy and Fuels, 31(2), 1896–1903. https://doi.org/10.1021/acs.energyfuels.6b02101.

Maia, A. Á. B., Dias, R. N., Angélica, R. S., & Neves, R. F. (2019). Influence of an aging step on the synthesis of zeolite NaA from Brazilian Amazon kaolin waste. Journal of Materials Research and Technology, 8(3), 2924–2929. https://doi.org/10.1016/j.jmrt.2019.02.021.

McGlashan, N., Shah, N., Caldecott, B., & Workman, M. (2012). High-level techno-economic assessment of negative emissions technologies. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2012.10.004.

Mebreka, A., & , Hadda Rezzaga, Sihem Benayachea, Afef Azzia, Yasmina Taïbib, Sabrina Ladjamaa, Naima Touatia, Azzedine Grida, S. B. (2019). Effect of chamotte on the structural and microstructural characteristics of mullite elaborated via reaction sintering of Algerian kaolin.

Mendiara, T., Pérez-Astray, A., Izquierdo, M. T., Abad, A., de Diego, L. F., García-Labiano, F., … Adánez, J. (2018). Chemical Looping Combustion of different types of biomass in a 0.5 kWth unit. Fuel, 211, 868–875. https://doi.org/10.1016/j.fuel.2017.09.113.

Oliveira, M M., Esteves, P. M. S. V., Baía, S. R. D., Dantas, N. S., Silva, V. F. (2020). Análise da produção científica internacional sobre mudanças climáticas e poluição do ar. Pesquisa, Sociedade e Desenvolvimento,9 (10), e1609108314. http://dx.doi.org/10.33448/rsd-v9i10.8314.

San Pio, M. A., Gallucci, F., Roghair, I., & van Sint Annaland, M. (2017). On the mechanism controlling the redox kinetics of Cu-based oxygen carriers. Chemical Engineering Research and Design, 124, 193–201. https://doi.org/10.1016/j.cherd.2017.06.019.

San Pio, M. A., Martini, M., Gallucci, F., Roghair, I., & van Sint Annaland, M. (2018). Kinetics of CuO/SiO2 and CuO/Al2O3 oxygen carriers for chemical looping combustion. Chemical Engineering Science, 175, 56–71. https://doi.org/10.1016/j.ces.2017.09.044.

San Pio, M. A., Roghair, I., Gallucci, F., & van Sint Annaland, M. (2016). Investigation on the decrease in the reduction rate of oxygen carriers for chemical looping combustion. Powder Technology, 301, 429–439. https://doi.org/10.1016/J.POWTEC.2016.06.031.

Santos, K. C. V, Gonçalves, W. P., Silva, V. J., Santana, L. N. L., & Lira, H. L. (2017). Formação de Mulita a Partir de Composições de Caulim e Alumina com Diferentes Tamanhos de Partículas. Revista Eletrônica de Materiais e Processos, 3(2016), 136–142.

Song, H., Shah, K., Doroodchi, E., Wall, T., & Moghtaderi, B. (2014). Reactivity of Al2O3- or SiO2-Supported Cu-, Mn-, and Co-based oxygen carriers for chemical looping air separation. Energy and Fuels, 28(2), 1284–1294. https://doi.org/10.1021/ef402268t.

Takht, M., & Saeed, R. (2014). Carbon dioxide capture and utilization in petrochemical industry : potentials and challenges. (27), 63–77. https://doi.org/10.1007/s13203-014-0050-5.

Van Garderen, Noémie, Clemens, F. J., Kaufmann, J., Urbanek, M., Binkowski, M., Graule, T., & Aneziris, C. G. (2012). Pore analyses of highly porous diatomite and clay based materials for fluidized bed reactors. Microporous and Mesoporous Materials, 151, 255–263. https://doi.org/10.1016/J.MICROMESO.2011.10.028.

Van Garderen, Noemie, Otal, E. H., Aneziris, C. G., Graule, T., & Clemens, F. J. (2014). Influence of porous substrate on copper based oxygen carrier efficiency for chemical-looping combustion. Microporous and Mesoporous Materials, 190, 362–370. https://doi.org/10.1016/j.micromeso.2014.02.017.

Wang, K., Yan, X., & Komarneni, S. (2018). CO 2 Adsorption by Several Types of Pillared Montmorillonite Clays. Applied Petrochemical Research, 8(3), 173–177. https://doi.org/10.1007/s13203-018-0206-9.

Wang, P., Means, N., Howard, B. H., Shekhawat, D., & Berry, D. (2018). The reactivity of CuO oxygen carrier and coal in Chemical-Looping with Oxygen Uncoupled (CLOU) and In-situ Gasification Chemical-Looping Combustion (iG-CLC). Fuel, 217(January), 642–649. https://doi.org/10.1016/j.fuel.2017.12.102.

Wang, X., Xu, T., Jin, X., Hu, Z., Liu, S., Xiao, B., … Hu, M. (2017). CuO supported on olivine as an oxygen carrier in chemical looping processes with pine sawdust used as fuel. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2017.07.175.

Zhang, L., Li, K., Gu, Z., Zhu, X., Wei, Y., Li, L., … Wang, H. (2019). Iron-rich copper ore as a promising oxygen carrier for chemical looping combustion of methane. Journal of the Taiwan Institute of Chemical Engineers, 101, 204–213. https://doi.org/10.1016/j.jtice.2019.04.053.

Descargas

Publicado

03/04/2021

Cómo citar

COSTA, R. C. P. da .; NASCIMENTO , R. A. B. do .; MELO, D. M. de A. .; ALBUQUERQUE, D. S. .; MEDEIROS, R. L. B. de A. .; MELO, M. A. de F. .; ADÁNEZ, J. Desarrollo de transportadores de oxígeno a base de CuO soportado por diatomita y caolín para combustión por recirculación química. Research, Society and Development, [S. l.], v. 10, n. 4, p. e15110412831, 2021. DOI: 10.33448/rsd-v10i4.12831. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12831. Acesso em: 23 nov. 2024.

Número

Sección

Ingenierías