Efecto de una vitrocerámica whitlockita sobre la oclusión de los túbulos dentinarios para el tratamiento de la hipersensibilidad dentinaria
DOI:
https://doi.org/10.33448/rsd-v10i3.13161Palabras clave:
Biomateriales; Vitrocerámica bioactiva; Remineralización de dentina; Caracterización; 3CaO.P2O5-SiO2-MgO; Hipersensibilidad dentinaria.Resumen
Hipersensibilidad Dentinaria (HD) se caracteriza por un dolor breve y agudo en respuesta a estímulos externos y se puede tratar ocluyendo los túbulos dentinarios. En este estudio, se evaluó la eficacia de una vitrocerámica whitlockita (fase de fosfato tricálcico sustituido con Mg) basada en el sistema 3CaO.P2O5-SiO2-MgO y su vidrio en el tratamiento de HD. Un vidrio bioactivo 52,75.(3CaO.P2O5) –30SiO2–17,25.MgO (%peso) se trató térmicamente a 700°C y 775°C/4h. Dientes del tercer molar humano fueron desmineralizados y distribuidos aleatoriamente en grupos: NT - control negativo (sin tratamiento), GB - control positivo (tratado con Bioglass®45S5), GL - tratamiento con vidrio parental y WGC - tratamiento con vitrocerámica whitlockita. Las muestras de dentina se sumergieron en saliva artificial y se almacenaron durante 7 días a 37ºC. Los biomateriales se evaluaron mediante difracción de rayos X (DRX) y microscopía electrónica de barrido (MEB). Las muestras de dentina fueron analizadas por ATR-FTIR y por MEB. XRD identificó la whitlockita como la fase cristalina de GC y su presencia conduce a la formación de partículas romas, como se muestra en las imágenes. ATR-FTIR confirmó compuestos de apatita en todas las muestras de BG, GL y WGC, lo que fue corroborado por la oclusión de los túbulos dentinarios, en las imágenes MEB. Además, las intensidades relativas de los picos infrarrojos se compararon estadísticamente. Con respecto a la reactividad de la superficie mediante el análisis FTIR semicuantitativo, whitlockita GC demostró similitud con Bioglass®45S5, lo que indica que este material es prometedor para el tratamiento de HD.
Citas
Addy, M. (2002). Dentine hypersensitivity: new perspectives on an old problem. International Dental Journal, 52, 367-375.
Ana, P. A., Tabchoury, C. P., Cury, J. A., & Zezell, D. M. (2012). Effect of Er,Cr:YSGG laser and professional fluoride application on enamel demineralization and on fluoride retention. Caries Research, 46(5), 441-51.
Apel, E., Deubener, J., Bernard, A., Holand, M., Muller, R., Kappert, H., Rheinberger, V., & Holland W. (2008). Phenomena and mechanisms of crack propagation in glass-ceramics. Journal of Mechanical Behavior of Biomedical Material, 1(4), 313-325.
Bakry, A .S., Sadr, A., Takahashi, H., Otsuki, M., & Tagami, J. (2007). Analysis of Er:YAG Laser Dentin using Attenuated Total Reflectance Fourie Transform Infrared and X-ray Diffaction Techniques. Dental Material Journal, 26(3), 422-428.
Bakry, A .S., Takahashi, H., & Otsuki, M. (2011). CO2 Laser Improves 45S5 Bioglass Interaction with Dentin. Journal of Dental Research, 90(2), 246-250.
Bamise, C. T., & Esan, T. A. (2011). Mechanisms and treatment approaches of dentine hypersensitivity: a literature review. Oral Health Preventive Dentistry, 9(4), 353-67.
Blatz, M.B. (2012). Laser Therapy may be Better Than Topical Desensitizing Agents for Treating Dentin Hypersensitivity. Journal of Evid-Based Dental Practice, 12(2), 69-70.
Chatzistavrou, X., Rao, R. R., & Caldwell, D. J. (2016). Collagen/fibrin microbeads as a delivery system for Ag-doped bioactive glass and DPSCs for potential applications in dentistry. Journal of Non-Crystalline Solids, 432(15A), 143-149.
Crovace, M. C., Souza, M. T., & Chinaglia, C. R. (2016). Biosilicate® - A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. Journal of Non-Crystalline Solids, 432, 90-110.
Cunha, S. R., Garófalo, S.A., Scaramucci, T., Zezell, D. M., & Aranha, A. C. C. (2017). The association between Nd:YAG laser and desensitizing dentifrices for the treatment of dentin hypersensitivity. Lasers Medicine Science, 32, 873-880.
Daguano, J. K. M. F., Rogero, S. O., Crovace, M. C., Peitl, O., Strecker, K., & Santos, C. (2013). Bioactivity and Cytotoxicity of Glass and Glass Ceramics Based on the 3CaO.P2O5–SiO2-MgO System. Journal of Materials Science: Materials in Medicine, 24, 2171-2180.
Daguano, J. K. M. F., Strecker, K., Ziemath, E. C., Rogero, S. O., Fernandes, M. H. V., & Santos, C. (2012). Effect of partial crystallization on the mechanical properties and cytotoxicity of bioactive glass from the 3CaO.P2O5-SiO2-MgO system. Journal of Mechanical Behavior of Biomedical Material, 14, 78-88.
Farooq, I., Moheet, I. A., & AlShwaimi, E. (2015). In vitro dentin tubule occlusion and remineralization competence of various toothpastes. Archives of Oral Biology, 60, 1246-1253.
Fornaini, C., Brulat-Bouchard, N., Medioni, E., Zhang, S., Rocca, J., Merigo, E. (2020) Nd:YAP laser in the treatment of dentinal hypersensitivity: An ex vivo study. Journal of Photochemistry and Photobiology B: Biology, 203, 111740.
Gallob, J., Ling, M. R., Amini, P., Patil, A., Atassi, M. (2019). Efficacy of a dissolvable strip with calcium sodium phosphosilicate (NovaMin®) in providing rapid dentine hypersensitivity relief. Journal of Dentistry: X, 2, 100003.
Gondim, A. L. M. F., Barbosa, G. A. S., Dantas, W. R. M., Dantas, E. M., Oliveira, H. T. R. de ., Almeida Neto, L. F. de, Marcelino, K. P., & Pagnoncelli, R. M. . (2020). Effect of laser therapy on osteogenesis in skullcap defects filled with α-TCP cement and β-TCP/HA granules: animal model. Research, Society and Development, 9(10), e6889109061.
Hench, L.L., & Jones, J.R. (2015). Bioactive Glasses: Frontiers and Challenges. Frontiers in Bioengineering Biotechnology, 3, 194.
Huang, M., Hill, R.G., & Rawlinson, S.C.F. (2017). Zinc bioglasses regulate mineralization in human dental pulp stem cells. Dental Materials, 33(5), 543-552.
Kim, J., & Park, J. Dentin hypersensitivity and emerging concepts for treatments. (2017). Journal of Oral Bioscience, 59, 211-217.
Kulal, R., Jayanti, I., Sambashivaiah, S., & Bilchodmath, S. (2016). An In-vitro Comparison of Nano Hydroxyapatite, Novamin and Proargin Desensitizing Toothpastes - A SEM Study. Journal of Clinical and Diagnostic Research, 10(10), ZC51-ZC54.
Ma, Q., Wang, T., Meng, Q., Xu, X., Wu, H., Xu, D., & Chen, Y. (2017). Comparison of in vitro dentinal tubule occluding efficacy of two different methods using a nano-scaled bioactive glass-containing desensitising agent. Journal of Dentistry, 60, 63–69.
Mantzourania, M., & Sharma, D. (2013). Dentine sensitivity: Past, present and future Journal of Dentistry, 41(4), s3-s17.
Miguez-Pacheco, V., Hench, L.L., & Boccaccini, A.R. (2015). Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues. Acta Biomaterialia, 13, 1-15.
Mitchell, J.C., Musanje, L., & Ferracane, J.L. (2011). Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dental Material, 27, 386-393.
Montazerian, M., & Zannoto E.D. (2016). History and trends of bioactive glass-ceramics. Journal of Biomedical Material Research Part A, 104, 1231-1249.
Moreira, M. M., Silva, L. R. R., Mendes, T. A. D, Santiago, S. L., Mazzetto, S. E., Lomonaco, D., & Feitosa, V. P. (2018). Synthesis and characterization of a new methacrylate monomer derived from the cashew nutshell liquid (CNSL) and its effect on dentinal tubular occlusion. Dental Material, 34, 1144-1153.
Nascimento, M. E. S., Júnior, J. R. L. S., Lima, M. V. A., Almeida, N. M. S., Hora, S.L., & Cabral, L.L. (2020). Etiology and treatment of dentin hyperesensitivity today: integrative review. Research, Society and Development, 9(8), e661986192.
Peitl, O., LaTorre, G. P., & Hench. L.L. (1996). Effect of crystallization on apatite-layer formation of bioactive glass 45S5. Journal of Biomedical Material Research, 30(4), 509-14.
Peitl, O., Zanotto, E. D., Serbena, F. C., & Hench, L. L. (2012). Compositional and microstructural design of highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. Acta Biomaterialia, 8, 321-332.
Seong, J., Newcombe, R. G., Matheson, J. R., Weddell, L., Edwards, M., & West, N. X. (2020). A randomised controlled trial investigating efficacy of a novel toothpaste containing calcium silicate and sodium phosphate in dentine hypersensitivity pain reduction compared to a fluoride control toothpaste. Journal of Dentistry, 98, 103320.
Shiau, H. J. (2012). Dentin Hypersensitivity. Journal of Evid-Based Dental Practice, 12(3), 220-28.
Song, J., Wang, H., Yang, Y., Xiao, Z., Lin, H., Jin, L., Lin, M., Chen, F., Zhu, M., Zhao, Y., Qiu, Z., Li, Y., & Zhang, X. (2018). Nanogels of carboxymethyl chitosan and lysozyme encapsulated amorphous calcium phosphate to occlude dentinal tubules. Journal of Materials Science: Materials in Medicine, 29, 84-95.
Suge, T., Kawasaki, A., Ishikawa, K., Matsuo, T., & Ebisu, S. (2008). Ammonium hexafluorosilicate elicits calcium phosphate precipitation and shows continuous dentin tubule occlusion. Dental Material, 24(2), 192-198.
Tartari, T., Bachmann, L., Zancan, R. F., Vivian, R. R., Duarte, M. A. H., & Bramante, C. M. (2018). Analysis of the effects of several decalcifying agents alone and in combination with sodium hypochlorite on the chemical composition of dentine. International Endodhotic Journal, 51(1), e42-e54.
Thanatvarakorn, O., Nakashima, S., Sadr, A., Ikeda, M., & Tagami, J. (2013). In vitro evaluation of dentinal hydraulic conductance and tubule sealing by a novel calcium–phosphate desensitizer Journal of Biomedical Material Research Part B. 101, 303-309.
Tirapelli, C., Panzeri, H., Lara, E. H., Soares, R. G., Peitl, O., & Zanotto, E. D. (2011). The effect of a novel crystallised bioactive glass-ceramic powder on dentine hypersensitivity: a long-term clinical study. Journal of Oral Rehabilitation, 38(4), 253-62.
Tirapelli, C., Panzeri, H., Soares, R. G., Peitl, O., & Zannoto, E. D. (2010). A novel bioactive glass-ceramic for treating dentin hypersensitivity. Brazilian Oral Research, 24, 381-387.
Tunar, O. L., Gursoy, H., Çakar, G., Kuru, B., Ipci, S. D., & Yilmaz, S. (2014). Evaluation of the Effects of Er:YAG Laser and Desensitizing Paste Containing 8% Arginine and Calcium Carbonate, and Their Combinations on Human Dentine Tubules: A Scanning Electron Microscopic Analysis. Photomedicine and Laser Surgery, 32(10), 540-545.
Wang, S., Gao, X., Gong, W., Zhang, Z., Chen, X., & Dong, Y. (2014). Odontogenic differentiation and dentin formation of dental pulp cells under nanobioactive glass induction. Acta Biomaterialia., 10, 2792-2803.
Zhong, Y., Liu, J., Li, X., Yin, W., He, T., Hu, D., Liao, Y., Yao, X., & Wang, Y. (2015). Effect of a novel bioactive glass-ceramic on dentinal tubule occlusion: an in vitro study. Australian Dental Journal, 60, 96–103.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Amanda de Castro Juraski; Daniela Casimiro Figueredo; Nasser Ali Daghastanli; Claudinei dos Santos; Maria Helena Vaz Fernandes; Patrícia Aparecida da Ana; Juliana Kelmy Macário Barboza Daguano
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.