Evaluación de las propiedades térmicas de la mezclas PLA/SEBS con moringa sometida a degradación en un entorno marino

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i4.13249

Palabras clave:

PLA; SEBS; Polvo de hoja de moringa oleifera; Entorno marino simulado.

Resumen

En este trabajo, se investigó la influencia del contenido de SEBS y Moringa Oleifera en la propiedades termales de mezclas PLA/SEBS y de dos biocompuestos basados ​​en dos de estas mezclas. Se prepararon dos mezclas de PLA/SEBS (90/10 y 70/30), dos biocompuestos de PLA/SEBS/MO (90/10/1 y 70/30/1), y un biocompuesto PLA / MO (100/1), mezclando en estado fundido en una extrusora de matriz abierta. Las muestras para biodegradación se obtuvieron mediante prensado en caliente, siendo posteriormente insertadas en un ambiente marino simulado. La evolución de la degradación se evaluó mediante termogravimetría y calorimetría exploratoria diferencial. Se observó un aumento en la cristalinidad de todas las composiciones evaluadas y una reducción de la estabilidad térmica después de la exposición al medio marino por períodos prolongados. Esta mayor cristalinidad puede estar relacionada con el consumo de regiones amorfas y la menor estabilidad térmica está ligada a la degradación hidrolítica del PLA, debido al agua absorbida por la moringa en polvo. La evaluación de la variación de masa mostró que las mezclas con SEBS y Moringa, presentaron una tasa de degradación equivalente o menor a la reportada para PLA puro.

Biografía del autor/a

Jéssica Camilla da Costa Lima, Universidade Federal de Pernambuco

Programa de Pós-Graduação em Ciência de Materiais

Rosmary Nichele Brandalise, Universidade de Caxias do Sul

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PROCESSOS E TECNOLOGIAS

Yêda Medeiros Bastos de Almeida, Universidade Federal de Pernambuco

Departamento de Engenharia Química

Tomás Jeferson Alves de Melo, Universidade Federal de Campina Grande

Programa de Pós-graduação em Ciência e Engenharia de Materiais

Glória Maria Vinhas, Universidade Federal de Pernambuco

Departamento de Engenharia Química

Citas

Abdelwahab, M. A., Flynn, A., Chiou, B.-S., Imam, S., Orts, W., & Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polymer Degradation and Stability, 97(9), 1822–1828.

Alegbeleye, O. O. (2018). How functional is Moringa Oleifera? A review of its nutritive, medicinal, and socioeconomic potential. Food and Nutrition Bulletin, 39(1), 149–170.

Alias, N. F., & Ismail, H. (2019). An overview of toughening polylactic acid by an elastomer. Polymer-Plastics Technology and Materials, 58(13), 1399–1422.

Balakrishnan, H., Hassan, A., & Wahit, M. U. (2010). Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends. Journal of Elastomers & Plastics, 42(3), 223–239.

Bernardes, G. P., da Rosa Luiz, N., Santana, R. M. C., & de Camargo Forte, M. M. (2019). Rheological behavior and morphological and interfacial properties of PLA/TPE blends. Journal of Applied Polymer Science, 136(38), 47962.

Capitain, C., Ross-Jones, J., Möhring, S., & Tippkötter, N. (2020). Differential scanning calorimetry for quantification of polymer biodegradability in compost. International Biodeterioration & Biodegradation, 149, 104914.

Carrasco, F., & Pagès, P. (2008). Thermal degradation and stability of epoxy nanocomposites: Influence of montmorillonite content and cure temperature. Polymer Degradation and Stability, 93(5), 1000–1007. https://doi.org/10.1016/j.polymdegradstab.2008.01.018

Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116–125.https://doi.org/10.1016/j.polymdegradstab.2009.11.045

Chang, J., An, Y. U., & Sur, G. S. (2003). Poly (lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. Journal of Polymer Science Part B: Polymer Physics, 41(1), 94–103.

Chow, W. S., Tham, W. L., Poh, B. T., & Ishak, Z. A. M. (2018). Mechanical and thermal oxidation behavior of poly (Lactic Acid)/halloysite nanotube nanocomposites containing N, N′-Ethylenebis (Stearamide) and SEBS-g-MA. Journal of Polymers and the Environment, 26(7), 2973–2982.

Dhar, P., & Katiyar, V. (2017). Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites. International Journal of Biological Macromolecules, 104, 827–836.

Dias, P. D. P., & Chinelatto, M. A. (2019). Effect of poly (ε-caprolactone-b-tetrahydrofuran) triblock copolymer concentration on morphological, thermal and mechanical properties of immiscible PLA/PCL blends. Journal of Renewable Materials, 7(2), 129–138.

Falowo, A. B., Mukumbo, F. E., Idamokoro, E. M., Lorenzo, J. M., Afolayan, A. J., & Muchenje, V. (2018). Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Research International, 106, 317–334.

Fortunati, E., Puglia, D., Kenny, J. M., Haque, M. M.-U., & Pracella, M. (2013). Effect of ethylene-co-vinyl acetate-glycidylmethacrylate and cellulose microfibers on the thermal, rheological and biodegradation properties of poly (lactic acid) based systems. Polymer Degradation and Stability, 98(12), 2742–2751.

Gabbott, P. (2008). Principles and applications of thermal analysis. John Wiley & Sons.

George, A., Sanjay, M. R., Srisuk, R., Parameswaranpillai, J., & Siengchin, S. (2020). A comprehensive review on chemical properties and applications of biopolymers and their composites. International Journal of Biological Macromolecules, 154, 329–338.

Gunti, R., Ratna Prasad, A. V, & Gupta, A. (2018). Mechanical and degradation properties of natural fiber‐reinforced PLA composites: Jute, sisal, and elephant grass. Polymer Composites, 39(4), 1125–1136.

Gupta, S., Jain, R., Kachhwaha, S., & Kothari, S. L. (2018). Nutritional and medicinal applications of Moringa oleifera Lam.—Review of current status and future possibilities. Journal of Herbal Medicine, 11, 1–11.

Hakim, R. H., Cailloux, J., Santana, O. O., Bou, J., Sánchez‐Soto, M., Odent, J., Raquez, J.-M., Dubois, P., Carrasco, F., & Maspoch, M. L. (2017). PLA/SiO2 composites: Influence of the filler modifications on the morphology, crystallization behavior, and mechanical properties. Journal of Applied Polymer Science, 134(40), 45367.

Haque, M. M.-U., Alvarez, V., Paci, M., & Pracella, M. (2011). Processing, compatibilization and properties of ternary composites of Mater-Bi with polyolefins and hemp fibres. Composites Part A: Applied Science and Manufacturing, 42(12), 2060–2069.

Iovino, R., Zullo, R., Rao, M. A., Cassar, L., & Gianfreda, L. (2008). Biodegradation of poly (lactic acid)/starch/coir biocomposites under controlled composting conditions. Polymer Degradation and Stability, 93(1), 147–157.

Jia, C., Lu, P., & Zhang, M. (2020). Preparation and Characterization of Environmentally Friendly Controlled Release Fertilizers Coated by Leftovers-Based Polymer. Processes, 8(4), 417.

Jose, S., Thomas, S., Lievana, E., & Karger‐Kocsis, J. (2005). Morphology and mechanical properties of polyamide 12 blends with styrene/ethylene–butylene/styrene rubbers with and without maleation. Journal of Applied Polymer Science, 95(6), 1376–1387.

Juárez, D., Ferrand, S., Fenollar, O., Fombuena, V., & Balart, R. (2011). Improvement of thermal inertia of styrene–ethylene/butylene–styrene (SEBS) polymers by addition of microencapsulated phase change materials (PCMs). European Polymer Journal, 47(2), 153–161.

Krishnan, S., Mohanty, S., & Nayak, S. K. (2018). An eco-friendly approach for toughening of polylactic acid from itaconic acid based elastomer. Journal of Polymer Research, 25(1), 1–8.

Li, D., Shentu, B., & Weng, Z. (2011). Morphology, rheology, and mechanical properties of polylactide/poly (ethylene-co-octene) blends. Journal of Macromolecular Science, Part B, 50(10), 2050–2059.

Lima, J. C. C., Araújo, E. A. G., Agrawal, P., & Mélo, T. J. A. (2019). PLA/SEBS Bioblends: Influence of SEBS Content and of Thermal Treatment on the Impact Strength and Morphology. Macromolecular Symposia, 383(1), 1700072. https://doi.org/10.1002/masy.201700072

Liu, Y., Wang, X., Wei, X., Gao, Z., & Han, J. (2018). Values, properties and utility of different parts of Moringa oleifera: An overview. Chinese Herbal Medicines, 10(4), 371–378.

Merino, D., Mansilla, A. Y., Casalongué, C. A., & Alvarez, V. A. (2019). Performance of bio-based polymeric agricultural mulch films. In Polymers for Agri-food applications (pp. 215–240). Springer.

Mishra, K., & Sinha, S. (2020). Development and assessment of Moringa oleifera (Sahajana) leaves filler/epoxy composites: Characterization, barrier properties and in situ determination of activation energy. Polymer Composites, 41(12), 5016–5029.

Mittal, A., Garg, S., & Bajpai, S. (2020). Thermal decomposition kinetics and properties of grafted barley husk reinforced PVA/starch composite films for packaging applications. Carbohydrate Polymers, 240, 116225.

Muniyasamy, S., Ofosu, O., John, M. J., & Anandjiwala, R. D. (2016). Mineralization of poly (lactic acid)(PLA), poly (3-hydroxybutyrate-co-valerate)(PHBV) and PLA/PHBV blend in compost and soil environments. Journal of Renewable Materials, 4(2), 133–145.

Nehra, R., Maiti, S. N., & Jacob, J. (2018a). Analytical interpretations of static and dynamic mechanical properties of thermoplastic elastomer toughened PLA blends. Journal of Applied Polymer Science, 135(1), 1–13. https://doi.org/10.1002/app.45644

Nehra, R., Maiti, S. N., & Jacob, J. (2018b). Effect of Thermoplastic Elastomer on Melt Rheological and Fracture Behavior of Poly (Lactic Acid). Polymer-Plastics Technology and Engineering, 57(12), 1254–1264.

Palsikowski, P. A., Kuchnier, C. N., Pinheiro, I. F., & Morales, A. R. (2018). Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. Journal of Polymers and the Environment, 26(1), 330–341.

Park, S.-B., Lih, E., Park, K.-S., Joung, Y. K., & Han, D. K. (2017). Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 68, 77–105.

Paul, M.-A., Delcourt, C., Alexandre, M., Degée, P., Monteverde, F., & Dubois, P. (2005). Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polymer Degradation and Stability, 87(3), 535–542.

Pelegrini, K., Donazzolo, I., Brambilla, V., Coulon Grisa, A. M., Piazza, D., Zattera, A. J., & Brandalise, R. N. (2016). Degradation of PLA and PLA in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. Journal of Applied Polymer Science, 133(15), n/a-n/a. https://doi.org/10.1002/app.43290

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.

Pérez, I. P., Pasandín, A. M. R., Pais, J. C., & Pereira, P. A. A. (2019). Use of lignin biopolymer from industrial waste as bitumen extender for asphalt mixtures. Journal of Cleaner Production, 220, 87–98.

Pollet, E., Paul, M.-A., & Dubois, P. (2003). New aliphatic polyester layered-silicate nanocomposites. In Biodegradable polymers and plastics (pp. 327–350). Springer.

Qi, R., Luo, M., & Huang, M. (2011). Synthesis of styrene–ethylene–butylene–styrene triblock copolymer‐g‐polylactic acid copolymer and its potential application as a toughener for polylactic acid. Journal of Applied Polymer Science, 120(5), 2699–2706.

Ramsay, B. A., Langlade, V., Carreau, P. J., & Ramsay, J. A. (1993). Biodegradability and mechanical properties of poly-(beta-hydroxybutyrate-co-beta-hydroxyvalerate)-starch blends. Applied and Environmental Microbiology, 59(4), 1242–1246.

Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172, 566–581.

Soni, R., Kapri, A., Zaidi, M. G. H., & Goel, R. (2009). Comparative biodegradation studies of non-poronized and poronized LDPE using indigenous microbial consortium. Journal of Polymers and the Environment, 17(4), 233.

Tejada-Oliveros, R., Balart, R., Ivorra-Martinez, J., Gomez-Caturla, J., Montanes, N., & Quiles-Carrillo, L. (2021). Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Linseed Oil for Applications in Rigid Packaging. Molecules, 26(1), 240.

Tsou, C.-H., Kao, B.-J., Yang, M.-C., Suen, M.-C., Lee, Y.-H., Chen, J.-C., Yao, W.-H., Lin, S.-M., Tsou, C.-Y., Huang, S.-H., De Guzman, M., & Hung, W.-S. (2015). Biocompatibility and characterization of polylactic acid/styrene-ethylene-butylene-styrene composites. Bio-Medical Materials and Engineering, 26(s1), S147–S154. https://doi.org/10.3233/BME-151300

Valenga, M. G. P., Boschen, N. L., Rodrigues, P. R. P., & Maia, G. A. R. (2019). Agro-industrial waste and Moringa oleifera leaves as antioxidants for biodiesel. Industrial Crops and Products, 128, 331–337.

Verma, D., Fortunati, E., Jain, S., & Zhang, X. (2019). Biomass, Biopolymer-Based Materials, and Bioenergy: Construction, Biomedical, and Other Industrial Applications. Woodhead Publishing.

Vigneshwaran, S., Sundarakannan, R., John, K. M., Johnson, R. D. J., Prasath, K. A., Ajith, S., Arumugaprabu, V., & Uthayakumar, M. (2020). Recent advancement in the natural fiber polymer composites: a comprehensive review. Journal of Cleaner Production, 124109.

Wang, Y., Wei, Z., & Li, Y. (2018). Toughening polylactide with epoxidized styrene–butadiene impact resin: Mechanical, morphological, and rheological characterization. Journal of Applied Polymer Science, 135(13), 1–8. https://doi.org/10.1002/app.46058

Wilkinson, A. N., Clemens, M. L., & Harding, V. M. (2004). The effects of SEBS-g-maleic anhydride reaction on the morphology and properties of polypropylene/PA6/SEBS ternary blends. Polymer, 45(15), 5239–5249.

Yahya, E. B., Jummaat, F., Amirul, A. A., Adnan, A. S., Olaiya, N. G., Abdullah, C. K., Rizal, S., Mohamad Haafiz, M. K., & Khalil, H. P. S. (2020). A review on revolutionary natural biopolymer-based aerogels for antibacterial delivery. Antibiotics, 9(10), 648.

Yan, J., & Spontak, R. J. (2019). Toughening Poly (lactic acid) with Thermoplastic Elastomers Modified by Thiol–ene Click Chemistry. ACS Sustainable Chemistry & Engineering, 7(12), 10830–10839.

Zhang, G., Zhang, J., Zhou, X., & Shen, D. (2003). Miscibility and phase structure of binary blends of polylactide and poly (vinylpyrrolidone). Journal of Applied Polymer Science, 88(4), 973–979.

Publicado

02/04/2021

Cómo citar

LIMA, J. C. da C.; BRANDALISE, R. N.; ALMEIDA, Y. M. B. de; MELO, T. J. A. de; VINHAS, G. M. Evaluación de las propiedades térmicas de la mezclas PLA/SEBS con moringa sometida a degradación en un entorno marino. Research, Society and Development, [S. l.], v. 10, n. 4, p. e12210413249, 2021. DOI: 10.33448/rsd-v10i4.13249. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13249. Acesso em: 23 nov. 2024.

Número

Sección

Ingenierías