El rendimiento de laserterapia en angiogénesis y reparación de tejidos

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i3.13334

Palabras clave:

Fototerapia; Neovascularización fisiológica; Cicatrización de la herida.

Resumen

La cicatrización de heridas es un proceso complejo, compuesto por varias etapas interdependientes y simultáneas para reparar el tejido y, entre los métodos utilizados, la terapia con láser tiene efectos estimulantes biológicos y regenerativos. El propósito de esta revisión es comprender el mecanismo de acción de la terapia con láser en la reparación de tejidos y, más específicamente, en la angiogénesis. Se realizó una búsqueda bibliográfica en las bases de datos PUBMED, LILACS y SCIELO sobre el tema, utilizando las siguientes palabras clave: "fototerapia y angiogénesis" y "fototerapia y cicatrización de heridas". En esta búsqueda se agregaron un total de 3634 artículos, los cuales, luego de analizar los criterios, se excluyeron 3624, quedando 10 estudios. Dado lo anterior, se puede concluir que la terapia con láser se ha presentado como una alternativa terapéutica en la reparación de tejidos, actuando como fotobiomodulador, con efectos analgésicos, antiinflamatorios, antiedema y antimicrobianos, ofreciendo mejoras en los mecanismos de respuesta celular y presenta ventajas en las tres etapas del proceso de curación.

Citas

Alster, T. S., & Wanitphakdeedecha, R. (2009). Improvement of postfractional laser erythema with light-emitting diode photomodulation. Dermatologic surgery: official publication for American Society for Dermatologic Surgery, 35(5), 813–815. https://doi.org/10.1111/j.1524-4725.2009.01137.x

Andrade, F., Clark, R. M., & Ferreira, M. L. (2014). Effects of low-level laser therapy on wound healing. Revista do Colegio Brasileiro de Cirurgioes, 41(2), 129–133. https://doi.org/10.1590/s0100-69912014000200010

Arany, P. R., Nayak, R. S., Hallikerimath, S., Limaye, A. M., Kale, A. D., & Kondaiah, P. (2007). Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society, 15(6), 866–874. https://doi.org/10.1111/j.1524-475X.2007.00306.x

Carvalho, P., Silva, I. S., Reis, F. A., Perreira, D. M., & Aydos, R. D. (2010). Influence of ingaalp laser (660nm) on the healing of skin wounds in diabetic rats. Acta cirurgica brasileira, 25(1), 71–79. https://doi.org/10.1590/s0102-86502010000100016

Chaves, M. E., Araújo, A. R., Piancastelli, A. C., & Pinotti, M. (2014). Effects of low-power light therapy on wound healing: LASER x LED. Anais brasileiros de dermatologia, 89(4), 616–623. https://doi.org/10.1590/abd1806-4841.20142519

Chaves, M. E. A., Silva, F. S. D., Soares, V. P. C., Ferreira, R. A. M., Gomes, F. S. L., Andrade, R. M., & Pinotti, M. (2015). Evaluation of healing of pressure ulcers through thermography: a preliminary study. Res Biomed Eng, 31 (1), 3-9. https://doi.org/10.1590/2446-4740.0571

Colombo, F., Neto, A., Sousa, A. P., Marchionni, A. M., Pinheiro, A. L., & Reis, S. R. (2013). Effect of low-level laser therapy (λ660 nm) on angiogenesis in wound healing: a immunohistochemical study in a rodent model. Brazilian dental journal, 24(4), 308–312. https://doi.org/10.1590/0103-6440201301867

Corazza, A. V., Jorge, J., Kurachi, C., & Bagnato, V. S. (2007). Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomedicine and laser surgery, 25(2), 102–106. https://doi.org/10.1089/pho.2006.2011

Cury, V., Moretti, A. I., Assis, L., Bossini, P., Crusca, J., Neto, C. B., Fangel, R., de Souza, H. P., Hamblin, M. R., & Parizotto, N. A. (2013). Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1α and MMP-2. Journal of photochemistry and photobiology. B, Biology, 125, 164–170. https://doi.org/10.1016/j.jphotobiol.2013.06.004

Dall Agnol, M. A., Nicolau, R. A., de Lima, C. J., & Munin, E. (2009). Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers in medical science, 24(6), 909–916. https://doi.org/10.1007/s10103-009-0648-5

Damante, C., Marques, M., & De Micheli, G. (2010) Terapia com laser em baixa intensidade na cicatrização de feridas-revisão de literatura. RFO - UPF, 13 (3), 88 – 93.

Fantinati, M. S., Mendonça, D. E. O., Fantinati, A. M. M., Barbosa, D. A., Araújo, L. C., Afonso, C. L., Vinaud, M. C., & Lino Júnior, R. S.(2016). Activity of low level laser therapy on burning wounds in diabetic rats. Rev bras queimaduras, 15 (1): 42-9.

Feitosa, M. C., Carvalho, A. F., Feitosa, V. C., Coelho, I. M., Oliveira, R. A., & Arisawa, E. Â. (2015). Effects of the Low-Level Laser Therapy (LLLT) in the process of healing diabetic foot ulcers. Acta cirurgica brasileira, 30(12), 852–857. https://doi.org/10.1590/S0102-865020150120000010

Fiório, F. B., Silveira, L., Jr, Munin, E., de Lima, C. J., Fernandes, K. P., Mesquita-Ferrari, R. A., de Carvalho, P., Lopes-Martins, R. A., Aimbire, F., & de Carvalho, R. A. (2011). Effect of incoherent LED radiation on third-degree burning wounds in rats. Journal of cosmetic and laser therapy : official publication of the European Society for Laser Dermatology, 13(6), 315–322. https://doi.org/10.3109/14764172.2011.630082

Fushimi, T., Inui, S., Nakajima, T., Ogasawara, M., Hosokawa, K., & Itami, S. (2012). Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society, 20(2), 226–235. https://doi.org/10.1111/j.1524-475X.2012.00771.x

Gonçalves, R. V., Mezêncio, J. M., Benevides, G. P., Matta, S. L., Neves, C. A., Sarandy, M. M., & Vilela, E. F. (2010). Effect of gallium-arsenide laser, gallium-aluminum-arsenide laser and healing ointment on cutaneous wound healing in Wistar rats. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 43(4), 350–355. https://doi.org/10.1590/S0100-879X2010007500022

Gonçalves, R. V., Novaes, R. D., Cupertino, M., Moraes, B., Leite, J. P., Peluzio, M., Pinto, M. V., & da Matta, S. L. (2013). Time-dependent effects of low-level laser therapy on the morphology and oxidative response in the skin wound healing in rats. Lasers in medical science, 28(2), 383–390. https://doi.org/10.1007/s10103-012-1066-7

Huang, P. J., Huang, Y. C., Su, M. F., Yang, T. Y., Huang, J. R., & Jiang, C. P. (2007). In vitro observations on the influence of copper peptide aids for the LED photoirradiation of fibroblast collagen synthesis. Photomedicine and laser surgery, 25(3), 183–190. https://doi.org/10.1089/pho.2007.2062

Hussein, A. J., Alfars, A. A., Falih, M. A., & Hassan, A. N. (2011). Effects of a low level laser on the acceleration of wound healing in rabbits. North American journal of medical sciences, 3(4), 193–197. https://doi.org/10.4297/najms.2011.3193

Iryanov Y. M. (2016). Influence of Laser Irradiation Low Intensity on Reparative Osteogenesis and Angiogenesis Under Transosseous Osteosynthesis. Journal of lasers in medical sciences, 7(3), 134–138. https://doi.org/10.15171/jlms.2016.23

Leite, S. N., Andrade, T. A., Masson-Meyers, D., Leite, M. N., Enwemeka, C. S., & Frade, M. A. (2014). Phototherapy promotes healing of cutaneous wounds in undernourished rats. Anais brasileiros de dermatologia, 89(6), 899–904. https://doi.org/10.1590/abd1806-4841.20143356

Lim, W. B., Kim, J. S., Ko, Y. J., Kwon, H., Kim, S. W., Min, H. K., Kim, O., Choi, H. R., & Kim, O. J. (2011). Effects of 635nm light-emitting diode irradiation on angiogenesis in CoCl(2) -exposed HUVECs. Lasers in surgery and medicine, 43(4), 344–352. https://doi.org/10.1002/lsm.21038

Matos, F. S., Godolphim, F. J., Albuquerque-Júnior, R. L., Paranhos, L. R., Rode, S. M., Carvalho, C. A., & Ribeiro, M. A. (2018). Laser phototherapy induces angiogenesis in the periodontal tissue after delayed tooth replantation in rats. Journal of clinical and experimental dentistry, 10(4), e335–e340. https://doi.org/10.4317/jced.54499

Martins, S. S., Torres, O. J., Santos, O. J., Limeira Júnior, F., Sauaia Filho, E. N., Melo, S. P., Santos, R. H., & Silva, V. B. (2015). Analysis of the healing process of the wounds occurring in rats using laser therapy in association with hydrocolloid. Acta cirurgica brasileira, 30(10), 681–685. https://doi.org/10.1590/S0102-865020150100000005

Melo, V. A., Anjos, D. C., Albuquerque Júnior, R., Melo, D. B., & Carvalho, F. U. (2011). Effect of low level laser on sutured wound healing in rats. Acta cirurgica brasileira, 26(2), 129–134. https://doi.org/10.1590/s0102-86502011000200010

Mendonça, R. J., & Coutinho-Netto, J. (2009). Cellular aspects of wound healing. Anais brasileiros de dermatologia, 84(3), 257–262. https://doi.org/10.1590/s0365-05962009000300007

Moura, R. O., Nunes, L. C. C., Carvalho, M. E. M., & Miranda, B. R. (2014). Efeitos da luz emitida por diodos (LED) e dos compostos de quitosana na cicatrização de feridas. Revisão Sistemática. Rev ciênc farm básica apl, 35 (4), 513-518.

Pereira, M. C., de Pinho, C. B., Medrado, A. R., Andrade, Z., & Reis, S. R. (2010). Influence of 670 nm low-level laser therapy on mast cells and vascular response of cutaneous injuries. Journal of photochemistry and photobiology. B, Biology, 98(3), 188–192. https://doi.org/10.1016/j.jphotobiol.2009.12.005

Pereira A. S., Shitsuka D. M., Shitsuka F. J. P. R. (2018). Metodologia da pesquisa científica.

Pinheiro, A. L., Meireles, G. C., Carvalho, C. M., Ramalho, L. M., & dos Santos, J. N. (2009). Biomodulative effects of visible and IR laser light on the healing of cutaneous wounds of nourished and undernourished Wistar rats. Photomedicine and laser surgery, 27(6), 947–957. https://doi.org/10.1089/pho.2009.2607

Ribeiro, M. S., Núñez, S. C., Sabino, C. P., Yoshimura, T. M., Silva, C. R., Nogueira, G. E. C., Suzuki, H., & Garcez, A. S. (2015) Exploring light-based technology for wound healing and appliance disinfection. J Braz Chem Soc, 26 (12), 2583-9.https://dx.doi.org/10.5935/0103-5053.20150253

Sawasaki, I., Geraldo-Martins, V. R., Ribeiro, M. S., & Marques, M. M. (2009). Effect of low-intensity laser therapy on mast cell degranulation in human oral mucosa. Lasers in medical science, 24(1), 113–116. https://doi.org/10.1007/s10103-007-0531-1

Sousa, R. C., Maia Filho, A. L., Nicolau, R. A., Mendes, L. M., Barros, T. L., & Neves, S. M. (2015). Action of AlGaInP laser and high frequency generator in cutaneous wound healing. A comparative study. Acta cirurgica brasileira, 30(12), 791–798. https://doi.org/10.1590/S0102-865020150120000001

Tacon, K. C., Santos, H. C., Parente, L. M., Cunha, L. C., Lino-Júnior, R., Ribeiro-Rotta, R. F., Tacon, F. S., & Amaral, W. N. (2011). Healing activity of laser InGaAlP (660nm) in rats. Acta cirurgica brasileira, 26(5), 373–378. https://doi.org/10.1590/s0102-86502011000500008

Publicado

18/03/2021

Cómo citar

FERREIRA, A. C. D. .; BATISTA, A. L. A. .; CATÃO, M. H. C. de V. . El rendimiento de laserterapia en angiogénesis y reparación de tejidos. Research, Society and Development, [S. l.], v. 10, n. 3, p. e34610313334, 2021. DOI: 10.33448/rsd-v10i3.13334. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/13334. Acesso em: 7 jul. 2024.

Número

Sección

Revisiones