Síntesis de derivados del ácido cumarina-3-carboxílico de Ni(II), Cu(II) y Zn(II) y sus propiedades físico-químicas
DOI:
https://doi.org/10.33448/rsd-v10i3.13430Palabras clave:
Cumarina; Síntesis; Complejos; Antioxidante; Coordinación.Resumen
En la búsqueda de nuevos fármacos, las cumarinas son una clase importante de compuestos debido a sus propiedades químicas y biológicas, como la reducción potencial de las enfermedades cancerosas, la diabetes y las enfermedades cardiovasculares. Son compuestos heterocíclicos que contienen oxígeno en su estructura y se encuentran en las plantas. Para mejorar las propiedades químicas y biológicas del ácido cumarínico-3-carboxílico, se prepararon complejos de transición de Cu(II), Ni(II), Zn(II), utilizando el ácido cumarínico-3-carboxílico como precursor utilizando una nueva ruta sintética. Todos los complejos se caracterizaron mediante espectroscopia Ultravioleta (UV), Infrarroja (FTIR) y Raman; Microscopía electrónica de barrido (MEB); Difracción de rayos X (DRX), así como conductividad y análisis elemental. Los análisis de microscopía electrónica y de rayos X mostraron que el grado de cristalinidad de los complejos cambia al compararlos con el precursor, el ácido 3-carboxi-cumarínico, y su cristalinidad depende de la naturaleza del ion metálico unido a la cumarina. Además, se evaluó la acción antioxidante de los complejos mediante el método DPPH, cuyos resultados indicaron una mayor actividad de los complejos en comparación con el precursor, lo que sugiere que estos complejos pueden tener potenciales propiedades biológicas de interés.
Citas
Borges Bubols, G., da Rocha Vianna, D., Medina-Remon, A., von Poser, G., Maria Lamuela-Raventos, R., Lucia Eifler-Lima, V., & Cristina Garcia, S. (2013). The Antioxidant Activity of Coumarins and Flavonoids. Mini-Reviews in Medicinal Chemistry, 13(3), 318–334. https://doi.org/10.2174/1389557511313030002
Creaven, B. S., Devereux, M., Georgieva, I., Karcz, D., McCann, M., Trendafilova, N., & Walsh, M. (2011). Molecular structure and spectroscopic studies on novel complexes of coumarin-3-carboxylic acid with Ni(II), Co(II), Zn(II) and Mn(II) ions based on density functional theory. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 84(1), 275–285. https://doi.org/10.1016/j.saa.2011.09.041
Creaven, Bernadette S., Egan, D. A., Kavanagh, K., McCann, M., Noble, A., Thati, B., & Walsh, M. (2006). Synthesis, characterization and antimicrobial activity of a series of substituted coumarin-3-carboxylatosilver(I) complexes. Inorganica Chimica Acta, 359(12), 3976–3984. https://doi.org/10.1016/j.ica.2006.04.006
de Alcantara, F. C., Lozano, V. F., Vale Velosa, A. S., dos Santos, M. R. M., & Pereira, R. M. S. (2015). New coumarin complexes of Zn, Cu, Ni and Fe with antiparasitic activity. Polyhedron, 101, 165–170. https://doi.org/10.1016/J.POLY.2015.09.010
El-Wahab, Z. H. A., Mashaly, M. M., Salman, A. A., El-Shetary, B. A., & Faheim, A. A. (2004). Co(II), Ce(III) and UO2(VI) bis-salicylatothiosemicarbazide complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60(12), 2861–2873. https://doi.org/10.1016/j.saa.2004.01.021
Elhusseiny, A. F., Aazam, E. S., & Al-Amri, H. M. (2014). Synthesis of new microbial pesticide metal complexes derived from coumarin-imine ligand. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 128, 852–863. https://doi.org/10.1016/j.saa.2014.03.003
Halli, M. B., Sumathi, R. B., & Kinni, M. (2012). Synthesis, spectroscopic characterization and biological evaluation studies of Schiff’s base derived from naphthofuran-2-carbohydrazide with 8-formyl-7-hydroxy-4-methyl coumarin and its metal complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 99, 46–56. https://doi.org/10.1016/j.saa.2012.08.089
Ikeda, N. E. A., Novak, E. M., Maria, D. A., Velosa, A. S., & Pereira, R. M. S. (2015). Synthesis, characterization and biological evaluation of Rutin–zinc(II) flavonoid -metal complex. Chemico-Biological Interactions, 239, 184–191. https://doi.org/10.1016/j.cbi.2015.06.011
Islas, M. S., Martínez Medina, J. J., Piro, O. E., Echeverría, G. A., Ferrer, E. G., & Williams, P. A. M. (2018). Comparisons of the spectroscopic and microbiological activities among coumarin-3-carboxylate, o-phenanthroline and zinc(II) complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 198(Ii), 212–221. https://doi.org/10.1016/j.saa.2018.03.003
Kadhum, A. A. H., Mohamad, A. B., Al-Amiery, A. A., & Takriff, M. S. (2011). Antimicrobial and antioxidant activities of new metal complexes derived from 3-aminocoumarin. Molecules, 16(8), 6969–6984. https://doi.org/10.3390/molecules16086969
Khan, M. I., Khan, A., Hussain, I., Khan, M. A., Gul, S., Iqbal, M., Inayat-Ur-Rahman, & Khuda, F. (2013). Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes. Inorganic Chemistry Communications, 35, 104–109. https://doi.org/10.1016/j.inoche.2013.06.014
Lv, H. N., Wang, S., Zeng, K. W., Li, J., Guo, X. Y., Ferreira, D., Zjawiony, J. K., Tu, P. F., & Jiang, Y. (2015). Anti-inflammatory coumarin and benzocoumarin derivatives from Murraya alata. Journal of Natural Products, 78(2), 279–285. https://doi.org/10.1021/np500861u
Mueller, R. L. (2004). First-generation agents: Aspirin, heparin and coumarins. Best Practice and Research: Clinical Haematology, 17(1), 23–53. https://doi.org/10.1016/j.beha.2004.03.003
Musa, M., Cooperwood, J., & Khan, M. O. (2008). A Review of Coumarin Derivatives in Pharmacotherapy of Breast Cancer. In Current Medicinal Chemistry 15(26). https://doi.org/10.2174/092986708786242877
Patil, S. A., Prabhakara, C. T., Halasangi, B. M., Toragalmath, S. S., & Badami, P. S. (2015). DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: Synthesis and spectral approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 137, 641–651. https://doi.org/10.1016/j.saa.2014.08.028
Paya, M., Goodwin, P. A., De Las Heras, B., & Hoult, J. R. S. (1994). Superoxide scavenging activity in leukocytes and absence of cellular toxicity of a series of coumarins. Biochemical Pharmacology, 48(3), 445–451. https://doi.org/10.1016/0006-2952(94)90273-9
Song, P. P., Zhao, J., Liu, Z. L., Duan, Y. B., Hou, Y. P., Zhao, C. Q., Wu, M., Wei, M., Wang, N. H., Lv, Y., & Han, Z. J. (2017). Evaluation of antifungal activities and structure–activity relationships of coumarin derivatives. Pest Management Science, 73(1), 94–101. https://doi.org/10.1002/ps.4422
Wang, T., Peng, T., We, X., Wang, G., Sun, Y., Liu, S., Zhang, S., & Wang, L. (2019). Design, synthesis and preliminary biological evaluation of benzylsulfone coumarin derivatives as anti-cancer agents. Molecules, 24(22). https://doi.org/10.3390/molecules24224034
Wang, Y. H., Avula, B., Nanayakkara, N. P. D., Zhao, J., & Khan, I. A. (2013). Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food SUPPL.ements in the United States. Journal of Agricultural and Food Chemistry, 61(18), 4470–4476. https://doi.org/10.1021/jf4005862
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Dirceu Aparecido Gonçalves de Souza; Ricardo Luis Tranquilin; Marcio Luiz dos Santos; Regina Mara Silva Pereira
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.