Vía Enzima Convertidora de Angiotensina (ECA) II/Ang 1-7 /Activación del receptor pero como objetivo farmacológico en patologías cardíacas: una revisión sistemática
DOI:
https://doi.org/10.33448/rsd-v10i3.13553Palabras clave:
Enfermedades Cardiovasculares; Angiotensina; Sistema Renina-Angiotensina; Receptores de angiotensina; Desarrollo de medicamentos.Resumen
Objetivo: Comprender la activación de la ruta ECA II / Ang 1-7 / Receptor Mas como diana farmacológica en patologías cardíacas. Metodología: Se trata de una revisión sistemática de la literatura, investigada en las bases de datos EMBASE, MEDLINE y SCIELO, que utilizó el protocolo PRISMA para extraer datos primarios y transformarlos en datos secundarios. Resultados: El Sistema Renina Angiotensin es un componente esencial para el correcto funcionamiento fisiológico y homeostasis del sistema cardiovascular. Estando dividido en dos ejes, el clásico, que actualmente se utiliza en la farmacoterapia de la hipertensión y las enfermedades cardiovasculares. Es el eje no clásico que, a través de la enzima convertidora de angiotensina II (ECA II), la vía del receptor de angiotensina (1-7) y Mas, ha demostrado un importante efecto vasodilatador y cardioprotector. Demuestran un resultado prometedor y refuerzan la acción eficaz de MasR como vasodilatador, cardioprotector y reductor del remodelado miocárdico. Consideraciones finales: El eje no clásico tiene potencial en el desarrollo de fármacos para expandir nuevas estrategias farmacológicas para las enfermedades cardiovasculares.
Citas
Arroja, M. M. C., Reid, E., & McCabe, C. (2016). Therapeutic potential of the renin angiotensin system in ischaemic stroke. Experimental & translational stroke medicine, 8(1), 1-14.
Awwad, Z. M., El-Ganainy, S. O., ElMallah, A. I., Khattab, M. M., & El-Khatib, A. S. (2019). Telmisartan and captopril ameliorate pregabalin-induced heart failure in rats. Toxicology, 428, 152310.
Azushima, K., Morisawa, N., Tamura, K., & Nishiyama, A. (2020). Recent research advances in renin-angiotensin-aldosterone system receptors. Current hypertension reports, 22(3), 1-10.
Basu, R., Poglitsch, M., Yogasundaram, H., Thomas, J., Rowe, B. H., & Oudit, G. Y. (2017). Roles of angiotensin peptides and recombinant human ACE2 in heart failure. Journal of the American College of Cardiology, 69(7), 805-819.
Cargnello, M., & Roux, P. P. (2011). Ativação e função das MAPKs e seus substratos, as proteínas quinases ativadas por MAPK. Microbiology and molecular biology reviews , 75 (1), 50-83.
Cildir, G., Low, K. C., & Tergaonkar, V. (2016). Noncanonical NF-κB signaling in health and disease. Trends in molecular medicine, 22(5), 414-429.
Colafella, K. M. M., Hilliard, L. M., & Denton, K. M. (2016). Épocas no equilíbrio depressor / pressor do sistema renina-angiotensina. Clinical Science, 130 (10), 761-771.
Colafella, K. M. M., Bovée, D. M., & Danser, A. J. (2019). O sistema renina-angiotensina-aldosterona e seus alvos terapêuticos. Pesquisa experimental do olho , 186 , 107680.
Cole-Jeffrey, C. T., Liu, M., Katovich, M. J., Raizada, M. K., & Shenoy, V. (2015). ACE2 and microbiota: emerging targets for cardiopulmonary disease therapy. Journal of cardiovascular pharmacology, 66(6), 540.
Costantino, S., Paneni, F., & Cosentino, F. (2016). Ageing, metabolism and cardiovascular disease. The Journal of physiology, 594(8), 2061-2073.
e Silva, A. C. S., & Teixeira, M. M. (2016). ACE inhibition, ACE2 and angiotensin-(1 7) axis in kidney and cardiac inflammation and fibrosis. Pharmacological research, 107, 154-162.
Ferreira, G. G. (2016). Avaliação in vitro de efeitos anti-inflamatórios de extratos de Pouteria torta (mart.) Radlk e Pouteria ramiflora (Mart.) Radlk.
Ferrario, C. M., & Mullick, A. E. (2017). Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacological research, 125, 57-71.
Forrester, S. J., Booz, G. W., Sigmund, C. D., Coffman, T. M., Kawai, T., Rizzo, V., & Eguchi, S. (2018). Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiological reviews, 98(3), 1627-1738.
Hao, Q., Dong, X., Chen, X., Yan, F., Wang, X., Shi, H., & Dong, B. (2018). Angiotensin-Converting Enzyme 2 Inhibits Angiotensin II–Induced Abdominal Aortic Aneurysms in Mice. Human gene therapy, 29(12), 1387-1395.
Hrenak, J., Paulis, L., & Simko, F. (2016). Angiotensin A/Alamandine/MrgD axis: another clue to understanding cardiovascular pathophysiology. International journal of molecular sciences, 17(7), 1098.
Liao, W., Fan, H., Davidge, S. T., & Wu, J. (2019). Egg white–derived antihypertensive peptide IRW (Ile‐Arg‐Trp) reduces blood pressure in spontaneously hypertensive rats via the ACE2/ang (1‐7)/mas receptor Axis. Molecular nutrition & food research, 63(9), 1900063.
Meems, L. M., Andersen, I. A., Pan, S., Harty, G., Chen, Y., Zheng, Y., & Burnett Jr, J. C. (2019). Design, synthesis, and actions of an innovative bispecific designer peptide: NPA7. Hypertension, 73(4), 900-909.
Mendoza-Torres, E., Oyarzún, A., Mondaca-Ruff, D., Azocar, A., Castro, P. F., Jalil, J. E., & Ocaranza, M. P. (2015). ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Therapeutic advances in cardiovascular disease, 9(4), 217-237.
Merz, A. A., & Cheng, S. (2016). Sex differences in cardiovascular ageing. Heart, 102(11), 825-831.
Moher, D., Liberati, A., Tetzlaff, & Altman. (2015). Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiologia e Serviços de Saúde, 24(2), 335–342. https://doi.org/10.5123/s1679-49742015000200017
Montezano, A. C., Cat, A. N. D., Rios, F. J., & Touyz, R. M. (2014). Angiotensin II and vascular injury. Current hypertension reports, 16(6), 431.
Organização Pan-Americana da Saúde e Organização Mundial da Saúde. Doenças cardiovasculares: Folha informativa. OPAS. Disponível em:https://www.paho.org/bra/index.php?option=com_content&view=article&id=5253:doencas-cardiovasculares&Itemid=1096. Recuperado em: 26 jul. 2020.
Patel, V. B., Takawale, A., Ramprasath, T., Das, S. K., Basu, R., Grant, M. B., & Oudit, G. Y. (2015). Antagonism of angiotensin 1–7 prevents the therapeutic effects of recombinant human ACE2. Journal of molecular medicine, 93(9), 1003-1013.
Patel, S. N., Ali, Q., Samuel, P., Steckelings, U. M., & Hussain, T. (2017). Angiotensin II type 2 receptor and receptor mas are colocalized and functionally interdependent in obese zucker rat kidney. Hypertension, 70(4), 831-838.
Pinter, M., & Jain, R. K. (2017). Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Science Translational Medicine, 9(410).
Povlsen, A. L., Grimm, D., Wehland, M., Infanger, M., & Krüger, M. (2020). The vasoactive Mas receptor in essential hypertension. Journal of Clinical Medicine, 9(1), 267.
Qaradakhi, T., Gadanec, L. K., McSweeney, K. R., Tacey, A., Apostolopoulos, V., Levinger, I., & Zulli, A. (2020). The potential actions of angiotensin‐converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clinical and Experimental Pharmacology and Physiology, 47(5), 751-758.
Santos, R. A. S., Sampaio, W. O., Alzamora, A. C., Motta-Santos, D., Alenina, N., Bader, M., & Campagnole-Santos, M. J. (2018). The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiological reviews, 98(1), 505-553.
South, A. M., Shaltout, H. A., Washburn, L. K., Hendricks, A. S., Diz, D. I., & Chappell, M. C. (2019). Fetal programming and the angiotensin-(1-7) axis: a review of the experimental and clinical data. Clinical Science, 133(1), 55-74.
Stegbauer, J., Thatcher, S. E., Yang, G., Bottermann, K., Rump, L. C., Daugherty, A., & Cassis, L. A. (2019). Mas receptor deficiency augments angiotensin II-induced atherosclerosis and aortic aneurysm ruptures in hypercholesterolemic male mice. Journal of vascular surgery, 70(5), 1658-1668.
Te Riet, L., van Esch, J. H., Roks, A. J., van den Meiracker, A. H., & Danser, A. J. (2015). Hipertensão: alterações do sistema renina-angiotensina-aldosterona. Circulation research , 116 (6), 960-975.
Tobón‐Arroyave, S. I., Hurtado‐García, P., García‐Quintero, O. D., Isaza‐Guzmán, D. M., & Flórez‐Moreno, G. A. (2014). Immunoexpression of NF‐ĸB and their inhibitory subunits IĸBα and IĸBβ in giant cell lesions of the jaws: implications for their clinical behavior. Journal of Oral Pathology & Medicine, 44(9), 752-760.
Tóth, A. D., Turu, G., Hunyady, L., & Balla, A. (2018). Novel mechanisms of G-protein-coupled receptors functions: AT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Practice & Research Clinical Endocrinology & Metabolism, 32(2), 69-82.
Tufik, S., Pires, G. N., Kim, L. J., Tempaku, P., Albuquerque, R., & Andersen, M. L. (2017). Revisão sistemática sobre a epidemiologia das doenças cardiovasculares e respiratórias e suas associações com a poluição do ar em Vitória/ES. Clinical & Biomedical Research, 37(2).
Wang, J., He, W., Guo, L., Zhang, Y., Li, H., Han, S., & Shen, D. (2017). The ACE2-Ang (1-7)-Mas receptor axis attenuates cardiac remodeling and fibrosis in post-myocardial infarction. Molecular medicine reports, 16(2), 1973-1981.
Wang, D., Chai, X. Q., Magnussen, C. G., Zosky, G. R., Shu, S. H., Wei, X., & Hu, S. S. (2019). Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation. Pulmonary pharmacology & therapeutics, 58, 101833.
Zhang, W., Song, M., Qu, J., & Liu, G. H. (2018). Epigenetic modifications in cardiovascular aging and diseases. Circulation research, 123(7), 773-786.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Igor Matheus Oliveira da Silva; Júlia de Sousa Caroba ; Matheus Almeida Thorpe ; Luan Kelves Miranda de Souza
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.