Relación de la patogénesis de COVID-19 para la investigación en medicina periodontal. Parte I: Patogénesis de COVID-19
DOI:
https://doi.org/10.33448/rsd-v10i5.13729Palabras clave:
Infecciones por Coronavirus; Pathogenesis; Periodoncia.Resumen
La invasión celular mediada por la ectoenzima de la enzima convertidora de angiotensina 2 (ACE2) y las proteasas celulares, se dirige a diferentes tejidos y órganos. La pérdida de homeostasis del sistema renina-angiotensina desregula diferentes ejes, comprometiendo el control metabólico, cardiorrespiratorio, renal y hepático. La célula infectada con SARS-CoV-2 sufre piroptosis y libera patrones moleculares asociados con el daño: interleucina proinflamatoria (IL) -1b, IL-6, IL-8, IL-10, IL-17, proteína inducida-10, interferón gamma, proteína 10 inducida por interferón gamma, factor estimulante de colonias de granulocitos, factor estimulante de colonias de granulocitos-macrófagos, proteína inflamatoria de macrófagos 1α y 1β, proteína activante de quimioterapia de monocitos 1, proteína de macrófagos inflamatorios 1α, necrosis tumoral α y mediadores de enfermedades inflamatorias mediadas por el sistema inmunitario. La tormenta de citocinas y los anticuerpos no neutralizantes producidos por las células B circulantes agravan el daño a varios órganos. Durante la replicación viral y la baja saturación de oxígeno, la pérdida de homeostasis celular mediada por HIF puede provocar muerte/lisis celular y daño tisular, relacionado con la respuesta hiperinflamatoria. El SARS-CoV-2-ACE2 puede aumentar la permeabilidad, la inflamación y la transmisión microbiana debido a bacteriemia o endotoxemia, además de disbiosis. El potencial trombótico y el desequilibrio inmunoinflamatorio comprometen la función o conducen a lesiones e insuficiencia multiorgánica. La infección por SARS-CoV-2 tiene el potencial de modificar la historia natural de las enfermedades, las relaciones o interacciones entre diferentes sistemas y patologías y los efectos de sus tratamientos, como en el enfoque de la medicina periodontal.
Citas
Ali H., Daoud A., Mohamed M. M., Salim S. A., Yessayan L., Baharani J., Murtaza A., Rao V. & Soliman K. M. Survival rate in acute kidney injury superimposed COVID-19 patients: a systematic review and meta-analysis. Ren Fail. 2020,42(1):393-397. https://doi.org/10.1080/0886022X.2020.1756323.
Baris S., Alroqi F., Kiykim A., Karakoc-Aydiner E., Ogulur I., Ozen A., Charbonnier L.M., Bakır M., Boztug K., Chatila T.A. & Barlan I. B. Severe Early-Onset Combined Immunodeficiency due to Heterozygous Gain-of-Function Mutations in STAT1. J Clin Immunol. 2016,36(7):641-8. https://doi.org/10.1007/s10875-016-0312-
Bertram S., Glowacka I., Müller M. A., Lavender H., Gnirss K., Nehlmeier I., Niemeyer D., He Y., Simmons G., Drosten C., Soilleux E. J., Jahn O., Steffen I. & Pöhlmann S. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol. 2011,85(24):13363-72. https://doi.org/10.1128/JVI.05300-11.
Bonetti G., Manelli F., Patroni A., Bettinardi A., Borrelli G., Fiordalisi G., Marino A., Menolfi A., Saggini S., Volpi R., Anesi A. & Lippi G.. Laboratory predictors of death from coronavirus disease 2019 (COVID-19) in the area of Valcamonica, Italy. Clin Chem Lab Med. 2020,25,58(7):1100-1105. https://doi.org/10.1515/cclm-2020-0459.
Caly L., Druce J. D., Catton M. G., Jans D. A. & Wagstaff K. M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020,178:104787. https://doi.org/10.1016/j.antiviral.2020.104787.
Caly L., Wagstaff K. M. & Jans D. A. Nuclear trafficking of proteins from RNA viruses: potential target for antivirals? Antiviral Res. 2012,95(3):202-6. https://doi.org/10.1016/j.antiviral.2012.06.008.
Campbell C. M. & Kahwash R. Will Complement Inhibition Be the New Target in Treating COVID-19-Related Systemic Thrombosis? Circulation. 2020,141(22):1739-1741. https://doi.org/10.1161/CIRCULATIONAHA.120.047419.
Cao W. & Li T. (2020). COVID-19: towards understanding of pathogenesis. Cell Res. 2020,30(5):367-369. https://doi.org/10.1038/s41422-020-0327-4.
Cavazza T. & Vernos I. The RanGTP Pathway: From Nucleo-Cytoplasmic Transport to Spindle Assembly and Beyond. Front Cell Dev Biol. 2016,11,3:82. https://doi.org/10.3389/fcell.2015.00082.
Cekici A., Kantarci A., Hasturk H. & Van Dyke T. E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000. 2014,64(1):57-80. https://doi.org/10.1111/prd.12002.
Channappanavar R., Zhao J. & Perlman S. T cell-mediated immune response to respiratory coronaviruses. Immunol Res. 2014,59(1-3):118-28. https://doi.org/10.1007/s12026-014-8534-z.
Chen Y., Liu Q. & Guo D.. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020,92(4):418-423. https://doi.org/10.1002/jmv.25681.
Chen Y. T., Shao S. C., Hsu C. K., Wu I. W., Hung M. J. & Chen Y. C. Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis. Crit Care. 2020,16,24(1):346. https://doi.org/10.1186/s13054-020-03009-y.
Cheung C. Y., Poon L. L., Ng I. H., Luk W., Sia S. F., Wu M. H., Chan K. H., Yuen K. Y., Gordon S., Guan Y. & Peiris J. S. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol. 2005,79(12):7819-26. https://doi.org/10.1128/JVI.79.12.7819-7826.2005.
Chua R. L., Lukassen S., Trump S., Hennig B. P., Wendisch D., Pott F., Debnath O., Thürmann L., Kurth F., Völker M. T., Kazmierski J., Timmermann B., Twardziok S., Schneider S., Machleidt F., Müller-Redetzky H., Maier M., Krannich A., Schmidt S., Balzer F., Liebig J., Loske J., Suttorp N., Eils J., Ishaque N., Liebert U. G., von Kalle C., Hocke A., Witzenrath M., Goffinet C., Drosten C., Laudi S., Lehmann I., Conrad C., Sander L. E. & Eils R. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat Biotechnol. 2020,38(8):970-979. https://doi.org/10.1038/s41587-020-0602-4.
Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020,5(4):536-544. https://doi.org/10.1038/s41564-020-0695-z.
Croxford A. L., Lanzinger M., Hartmann F. J., Schreiner B., Mair F., Pelczar P., Clausen B. E., Jung S., Greter M. & Becher B. The Cytokine GM-CSF Drives the Inflammatory Signature of CCR2+ Monocytes and Licenses Autoimmunity. Immunity. 2015,43(3):502-14. https://doi.org/10.1016/j.immuni.2015.08.010.
Cui J., Li F. & Shi Z. L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019,17(3):181-192. https://doi.org/10.1038/s41579-018-0118-9.
Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., Chen L., Li M., Liu Y., Wang G., Yuan Z., Feng Z., Zhang Y., Wu Y. & Chen Y. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020,1,11:827. https://doi.org/10.3389/fimmu.2020.00827.
Fagerlund R., Kinnunen L., Köhler M., Julkunen I. & Melén K. NF-{kappa}B is transported into the nucleus by importin {alpha}3 and importin {alpha}4. J Biol Chem 2005,22,280(16):15942-51. https://doi.org/10.1074/jbc.M500814200.
Fang M., Siciliano N. A., Hersperger A. R., Roscoe F., Hu A., Ma X., Shamsedeen A. R., Eisenlohr L. C. & Sigal L. J. Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murine poxvirus infection. Proc Natl Acad Sci USA. 2012,109(25):9983-8. https://doi.org/10.1073/pnas.1202143109.
Fehr A.R. & Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015,1282:1-23. https://doi.org/10.1007/978-1-4939-2438-7_1.
Frater J. L., Zini G., d'Onofrio G. & Rogers H.J. COVID-19 and the clinical hematology laboratory. Int J Lab Hematol. 2020,42,Suppl1:11-18. https://doi.org/10.1111/ijlh.13229.
Frieman M., Ratia K., Johnston R. E., Mesecar A. D. & Baric R. S. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009,83(13):6689-705. https://doi.org/10.1128/JVI.02220-08.
Frieman M., Yount B., Heise M., Kopecky-Bromberg S. A., Palese P. & Baric R. S. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol. 2007,81(18):9812-24. https://doi.org/10.1128/JVI.01012-07.
Fujimoto I., Pan J., Takizawa T. & Nakanishi Y. Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. J Virol. 2000,74(7):3399-403. https://doi.org/10.1128/jvi.74.7.3399-3403.2000.
Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J. C., Turner A. J., Raizada M. K., Grant M. B. & Oudit G. Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020,8,126(10):1456-1474. https://doi.org/10.1161/CIRCRESAHA.120.317015.
Glowacka I., Bertram S., Müller M. A., Allen P., Soilleux E., Pfefferle S., Steffen I., Tsegaye T. S., He Y., Gnirss K., Niemeyer D., Schneider H., Drosten C. & Pöhlmann S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011,85(9):4122-34. https://doi.org/10.1128/JVI.02232-10.
Gralinski L. E. & Menachery V. D. Return of the Coronavirus: 2019-nCoV. Viruses. 2020,24,12(2):135. https://doi.org/10.3390/v12020135.
Gralinski L. E., Sheahan T. P., Morrison T. E., Menachery V. D., Jensen K., Leist S. R., Whitmore A., Heise M. T. & Baric R. S. Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. mBio. 2018,9(5):e01753-18. https://doi.org/10.1128/mBio.01753-18.
Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y., Zou W., Zhan J., Wang S., Xie Z., Zhuang H., Wu B., Zhong H., Shao H., Fang W., Gao D., Pei F., Li X., He Z., Xu D., Shi X., Anderson V.M., Leong A.S.. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005,202(3):415-24. https://doi.org/10.1084/jem.20050828.
Guan W. J., Ni Z. Y., Hu Y., Liang W. H., Ou C. Q., He J. X., Liu L., Shan H., Lei C. L., Hui D. S. C., Du B., Li L. J., Zeng G., Yuen K. Y., Chen R. C., Tang C. . L, Wang T., Chen P. Y., Xiang J., Li S. Y., Wang J. L., Liang Z. J., Peng Y. X., Wei L., Liu Y., Hu Y. H., Peng P., Wang J. M., Liu J. Y., Chen Z., Li G., Zheng Z. J., Qiu S. Q., Luo J., Ye C. J., Zhu S. Y., Zhong N. S., China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020,382(18):1708-1720. https://doi.org/10.1056/NEJMoa2002032.
Gürkan A., Emingil G., Saygan B. H., Atilla G., Köse T., Baylas H. & Berdeli A. Renin-angiotensin gene polymorphisms in relation to severe chronic periodontitis. J Clin Periodontol. 2009,36(3):204-11. https://doi.org/10.1111/j.1600-051X.2008.01379.x.
Hadjadj J., Yatim N., Barnabei L., Corneau A., Boussier J., Smith N., Péré H., Charbit B., Bondet V., Chenevier-Gobeaux C., Breillat P., Carlier N., Gauzit R., Morbieu C., Pène F., Marin N., Roche N., Szwebel T. A., Merkling S. H., Treluyer J. M., Veyer D., Mouthon L., Blanc C., Tharaux P. L., Rozenberg F., Fischer A., Duffy D., Rieux-Laucat F., Kernéis S. & Terrier B. (2020). Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020,369(6504):718-724. https://doi.org/10.1126/science.abc6027.
Hajishengallis G. & Sahingur S. E. Novel inflammatory pathways in periodontitis. Adv Dent Res. 2014,26(1):23-9. https://doi.org/10.1177/0022034514526240.
Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol. 2014,35(1):3-11. https://doi.org/10.1016/j.it.2013.09.001.
Hamming I., Timens W., Bulthuis M. L., Lely A. T., Navis G. & van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004,203(2):631-7. https://doi.org/10.1002/path.1570.
Helms J., Tacquard C., Severac F., Leonard-Lorant I., Ohana M., Delabranche X., Merdji H., Clere-Jehl R., Schenck M., Fagot Gandet F., Fafi-Kremer S., Castelain V., Schneider F., Grunebaum L., Anglés-Cano E., Sattler L., Mertes P. M., Meziani F. & CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020,46(6):1089-1098. https://doi.org/10.1007/s00134-020-06062-x.
Henry B. M., de Oliveira M. H. S., Benoit S., Plebani M. & Lippi G. (2020). Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020,58(7):1021-1028. https://doi.org/10.1515/cclm-2020-0369.
Hirano T. & Murakami M.. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity. 2020,19,52(5):731-733. https://doi.org/10.1016/j.immuni.2020.04.003.
Hiscox J. A., Wurm T., Wilson L., Britton P., Cavanagh D. & Brooks G. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J Virol. 2001,75(1):506-12. https://doi.org/10.1128/JVI.75.1.506-512.2001.
Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T. S., Herrler G., Wu N. H., Nitsche A., Müller M. A., Drosten C. & Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020,16,181(2):271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052.
Hollá L. I., Fassmann A., Vašků A., Znojil V., Vaněk J. & Vácha J. Interactions of Lymphotoxin α (TNF-β), Angiotensin-Converting Enzyme (ACE), and Endothelin-1 (ET-1) Gene Polymorphisms in Adult Periodontitis. J Periodontol. 2001,72(1):85-89. https://doi.org/10.1902/jop.2001.72.1.85.
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J. & Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020,15,395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.
Huang H., Wang S., Jiang T., Fan R., Zhang Z., Mu J., Li K., Wang Y., Jin L., Lin F., Xia J., Sun L., Xu B., Ji C., Chen J., Chang J., Tu B., Song B., Zhang C., Wang F. S. & Xu R. High levels of circulating GM-CSF+CD4+ T cells are predictive of poor outcomes in sepsis patients: a prospective cohort study. Cell Mol Immunol. 21h,16(6):602-610. https://doi.org/10.1038/s41423-018-0164-2.
Huang I., Lim M. A., Pranata R. . Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia - A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020,14(4):395-403. https://doi.org/10.1016/j.dsx.2020.04.018.
Huang I., Pranata R., Lim M. A., Oehadian A. & Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Ther Adv Respir Dis. 2020,14:1753466620937175. https://doi.org/10.1177/1753466620937175.
Huang K. J., Su I. J., Theron M., Wu Y. C., Lai S. K., Liu C. C. & Lei H. Y. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol. 2005,75(2):185-94. https://doi.org/10.1002/jmv.20255.
Hui D. S., Azhar E., Madani T. A., Ntoumi F., Kock R., Dar O., Ippolito G., Mchugh T.D., Memish Z.A., Drosten C., Zumla A. & Petersen E. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020,91:264-266. https://doi.org/10.1016/j.ijid.2020.01.009.
Jeffers S. A., Tusell S. M., Gillim-Ross L., Hemmila E. M., Achenbach J. E., Babcock G. J., Thomas W. D. Jr, Thackray L. B., Young M. D., Mason R. J., Ambrosino D. M., Wentworth D. E., Demartini J. C. & Holmes K. V. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA. 2004,2,101(44):15748-53. https://doi.org/10.1073/pnas.0403812101.
Kent W. J., Sugnet C. W., Furey T. S., Roskin K. M., Pringle T. H., Zahler A. M. & Haussler D. The human genome browser at UCSC. Genome Res. 2002,12(6):996-1006. https://doi.org/10.1101/gr.229102.
Kermali M., Khalsa R. K., Pillai K., Ismail Z. & Harky A. The role of biomarkers in diagnosis of COVID-19 - A systematic review. Life Sci. 2020,1,254:117788. https://doi.org/10.1016/j.lfs.2020.117788.
Kim Y. H., Han M. E. & Oh S. O. The molecular mechanism for nuclear transport and its application. Anat Cell Biol. 2017,50(2):77-85. https://doi.org/10.5115/acb.2017.50.2.77.
Koche, J. C. (2011). Fundamentos de metodologia científica. Petrópolis: Vozes. From: http://www.brunovivas.com/wp-content/uploads/sites/10/2018/07/K%C3%B6che-Jos%C3%A9-Carlos0D0AFundamentos-de-metodologia-cient%C3%ADfica -_- teoria-da0D0Aci% C3% AAncia-e-inicia% C3% A7% C3% A3o-% C3% A0-pesquisa.pdf
Kodiha M., Chu A., Matusiewicz N. & Stochaj U. Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death Differ. 2004,11(8):862-74. https://doi.org/10.1038/sj.cdd.4401432.
Konkel J. E., O'Boyle C. & Krishnan S. Distal Consequences of Oral Inflammation. Front Immunol. 2019,10:1403. https://doi.org/10.3389/fimmu.2019.01403.
Kopecky-Bromberg S. A., Martínez-Sobrido L., Frieman M., Baric R. A. & Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol., 81(2):548-57. https://doi.org/10.1128/JVI.01782-06.
Kornman K.S. Mapping the pathogenesis of periodontitis: a new look. J Periodontol. 2008, 79(8):1560-8. https://doi.org/10.1902/jop.2008.080213.
Koutsogiannaki S., Shimaoka M. & Yuki K. The Use of Volatile Anesthetics as Sedatives for Acute Respiratory Distress Syndrome. Transl Perioper Pain Med. 2019,6(2):27-38. https://doi.org/10.31480/2330-4871/084.
Kuba K., Imai Y. & Penninger J.M. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol. 6(3):271-6. https://doi.org/10.1016/j.coph.2006.03.001.
Lai C.C., Shih T.P., Ko W.C., Tang H.J. & Hsueh P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020,55(3):105924. https://doi.org/10.1016/j.ijantimicag.2020.105924.
Law H.K., Cheung C.Y., Ng H.Y., Sia S.F., Chan Y.O., Luk W., Nicholls J.M., Peiris J.S. & Lau Y.L. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 2005,106(7):2366-74. https://doi.org/10.1182/blood-2004-10-4166.
Leisman D.E., Deutschman C.S. & Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med. 2020,46(6):1105-1108. https://doi.org/10.1007/s00134-020-06059-6.
Li B., Si H.R., Zhu Y., Yang X.L., Anderson D.E., Shi Z.L., Wang L.F. & Zhou P. Correction for Li et al., "Discovery of Bat Coronaviruses through Surveillance and Probe Capture-Based Next-Generation Sequencing". mSphere. 2020,18,5(2):e00170-20. https://doi.org/10.1128/mSphere.00170-20.
Li G., Fan Y., Lai Y., Han T., Li Z., Zhou P., Pan P., Wang W., Hu D., Liu X., Zhang Q. & Wu J. Coronavirus infections and immune responses. J Med Virol. 2020,92(4):424-432. https://doi.org/10.1002/jmv.25685.
Li H., Liu L., Zhang D., Xu J., Dai H., Tang N., Su X. & Cao B. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020,9,395(10235):1517-1520. https://doi.org/10.1016/S0140-6736(20)30920-X
Lovren F., Pan Y., Quan A., Teoh H., Wang G., Shukla P.C., Levitt K.S., Oudit G.Y., Al-Omran M., Stewart D.J., Slutsky A.S., Peterson M.D., Backx P.H., Penninger J.M. & Verma S. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol. 2008,295(4):H1377-84. https://doi.org/10.1152/ajpheart.00331.2008.
Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., Bi Y., Ma X., Zhan F., Wang L., Hu T., Zhou H., Hu Z., Zhou W., Zhao L., Chen J., Meng Y., Wang J., Lin Y., Yuan J., Xie Z., Ma J., Liu W.J., Wang D., Xu W., Holmes E.C., Gao G.F., Wu G., Chen W., Shi W. & Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020,22,395(10224):565-574. https://doi.org/10.1016/S0140-6736(20)30251-8.
Ludke, M. & Andre, M.E.D.A. (2013). Pesquisas em educação: uma abordagem qualitativa. São Paulo: E.P.U.
Luo H., Chen Q., Chen J., Chen K., Shen X. & Jiang H. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1. FEBS Lett. 2005,9,579(12):2623-8. https://doi.org/10.1016/j.febslet.2005.03.080.
Malik V.S., Ravindra K., Attri S.V., Bhadada S.K. & Singh M. Higher body mass index is an important risk factor in COVID-19 patients: a systematic review and meta-analysis. Environ Sci Pollut Res Int. 2020,24:1–9. https://doi.org/10.1007/s11356-020-10132-4.
Mantovani A., Beatrice G. & Dalbeni A. Coronavirus disease 2019 and prevalence of chronic liver disease: A meta-analysis. Liver Int. 2020,40(6):1316-1320. https://doi.org/10.1111/liv.14465.
Marzi A., Gramberg T., Simmons G., Möller P., Rennekamp A.J., Krumbiegel M., Geier M., Eisemann J., Turza N., Saunier B., Steinkasserer A., Becker S., Bates P., Hofmann H. & Pöhlmann S. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol. 2004,78(21):12090-5. https://doi.org/10.1128/JVI.78.21.12090-12095.2004.
Mastellos D.C., Ricklin D. & Lambris JD. Clinical promise of next-generation complement therapeutics. Nat Rev Drug Discov. 2019,18(9):707-729. https://doi.org/10.1038/s41573-019-0031-6.
Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S. & Manson J.J. (2020). HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020,395(10229):1033-1034. https://doi.org/10.1016/S0140-6736(20)30628-0.
Merad M. & Martin JC. Author Correction: Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 20(7):448. https://doi.org/10.1038/s41577-020-0353-y. Erratum for: Nat Rev Immunol. 2020,20(6):355-362.
Miyamoto Y., Saiwaki T., Yamashita J., Yasuda Y., Kotera I., Shibata S., Shigeta M., Hiraoka Y., Haraguchi T. & Yoneda Y. Cellular stresses induce the nuclear accumulation of importin alpha and cause a conventional nuclear import block. J Cell Biol. 2004,7,165(5):617-23. https://doi.org/10.1083/jcb.200312008.
Moore J.D. The Ran-GTPase and cell-cycle control. Bioessays. 2001,23(1):77-85. https://doi.org/10.1002/1521-1878(200101)23:1<77::AID-BIES1010>3.0.CO,2-E.
Moreno-Eutimio M.A., López-Macías C. & Pastelin-Palacios R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect. 2020,22(4-5):226-229. https://doi.org/10.1016/j.micinf.2020.04.009.
Nakamura T., Hasegawa-Nakamura K., Sakoda K., Matsuyama T. & Noguchi K. Involvement of angiotensin II type 1 receptors in interleukin-1β-induced interleukin-6 production in human gingival fibroblasts. Eur J Oral Sci. 2011,119(5):345-51. https://doi.org/10.1111/j.1600-0722.2011.00850.x.
Narayanan K., Huang C., Lokugamage K., Kamitani W., Ikegami T., Tseng C.T. & Makino S. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol. 2008,82(9):4471-9. https://doi.org/10.1128/JVI.02472-07.
Noorimotlagh Z., Karami C., Mirzaee S.A., Kaffashian M., Mami S. & Azizi M. Immune and bioinformatics identification of T cell and B cell epitopes in the protein structure of SARS-CoV-2: A systematic review. Int Immunopharmacol. 2020,86:106738. https://doi.org/10.1016/j.intimp.2020.106738.
Pan W., Wang Q. & Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci. 2019,5,11(3):30. https://doi.org/10.1038/s41368-019-0064-z.
Pandey S., Kawai T. & Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol. 2014,9,7(1):a016246. https://doi.org/10.1101/cshperspect.a016246.
Pedersen S.F. & Ho Y.C. SARS-CoV-2: a storm is raging. J Clin Invest. 2020,1,130(5):2202-2205. https://doi.org/10.1172/JCI137647.
Peiris J.S., Guan Y. & Yuen KY. Severe acute respiratory syndrome. Nat Med. 2004,10(12 Suppl):S88-97. https://doi.org/10.1038/nm1143.
Pereira, A.S, Shitsuka, D.M., Parreira, F.J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria.
Perlman S. & Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009,7(6):439-50. https://doi.org/10.1038/nrmicro2147.
Pranata R., Huang I., Lim M.A. & Wahjoepramono EJ. Impact of cerebrovascular and cardiovascular diseases on mortality and severity of COVID-19-systematic review, meta-analysis, and meta-regression. J Stroke Cerebrovasc Dis. 2020,29(8):104949. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104949.
Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W. & Tian DS. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020,71(15):762-768. https://doi.org/10.1093/cid/ciaa248.
Queiroz-Junior C.M., Santos A.C.P.M., Galvão I., Souto G.R., Mesquita R.A., Sá M.A. & Ferreira A.J. The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas Receptor axis as a key player in alveolar bone remodeling. Bone. 2019,128:115041. https://doi.org/10.1016/j.bone.2019.115041.
Rabi F.A., Al Zoubi M.S., Kasasbeh G.A., Salameh D.M. & Al-Nasser AD. SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far. Pathogens. 2020,20,9(3):231. https://doi.org/10.3390/pathogens9030231.
Raj V.S., Mou H., Smits S.L., Dekkers D.H., Müller M.A., Dijkman R., Muth D., Demmers J.A., Zaki A., Fouchier R.A., Thiel V., Drosten C., Rottier P.J., Osterhaus A.D., Bosch B.J. & Haagmans B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013,14,495(7440):251-4. https://doi.org/10.1038/nature12005.
Read S.A., Obeid S., Ahlenstiel C. & Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr. 2019,1,10(4):696-710. https://doi.org/10.1093/advances/nmz013.
Risitano A.M., Mastellos D.C., Huber-Lang M., Yancopoulou D., Garlanda C., Ciceri F. & Lambris J.D. Author Correction: Complement as a target in COVID-19? Nat Rev Immunol. 2020,20(7):448. https://doi.org/10.1038/s41577-020-0366-6. Erratum for: Nat Rev Immunol. 2020,20(6):343-344.
Rodrigues M., Barbirato D., Luiz R.R., Scharfstein J., Salles G.F. & Feres-Filho E.J. Effect of antihypertensive therapy with angiotensin-converting enzyme inhibitors on chronic periodontitis: a case-control study. Oral Dis. 2016,22(8):791-796. https://doi.org/10.1111/odi.12551.
Rowland R.R., Chauhan V., Fang Y., Pekosz A., Kerrigan M. & Burton M.D. Intracellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in vero cells. J Virol. 2005,79(17):11507-12. https://doi.org/10.1128/JVI.79.17.11507-11512.2005.
Santos C.F., Akashi A.E., Dionísio T.J., Sipert C.R., Didier D.N., Greene A.S., Oliveira S.H., Pereira H.J., Becari C., Oliveira E.B. & Salgado M.C. Characterization of a local renin-angiotensin system in rat gingival tissue. J Periodontol. 2009,80(1):130-9. https://doi.org/10.1902/jop.2009.080264.
Santos C.F., Morandini A.C., Dionísio T.J., Faria F.A., Lima M.C., Figueiredo C.M., Colombini-Ishikiriama B.L., Sipert C.R., Maciel R.P., Akashi A.P., Souza G.P., Garlet G.P., Rodini C.O., Amaral S.L., Becari C., Salgado M.C., Oliveira E.B., Matus I., Didier D.N. & Greene A.S. Functional Local Renin-Angiotensin System in Human and Rat Periodontal Tissue. PLoS One. 2015,5,10(8):e0134601. https://doi.org/10.1371/journal.pone.0134601.
Sato H., Masuda M., Miura R., Yoneda M. & Kai C. Morbillivirus nucleoprotein possesses a novel nuclear localization signal and a CRM1-independent nuclear export signal. Virology. 2006,15,352(1):121-30. https://doi.org/10.1016/j.virol.2006.04.013.
Schett G., Sticherling M. & Neurath M.F. COVID-19: risk for cytokine targeting in chronic inflammatory diseases? Nat Rev Immunol. 2020,20(5):271-272. https://doi.org/10.1038/s41577-020-0312-7.
Shereen M.A., Khan S., Kazmi A., Bashir N. & Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020,16,24:91-98. https://doi.org/10.1016/j.jare.2020.03.005.
Siu K.L., Chan C.P., Kok K.H., Chiu-Yat Woo P. & Jin D.Y. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol. 2014,11(2):141-9. https://doi.org/10.1038/cmi.2013.61.
Sluimer J.C., Gasc J.M., Hamming I., van Goor H., Michaud A., van den Akker L.H., Jütten B., Cleutjens J., Bijnens A.P., Corvol P., Daemen M.J. & Heeneman S. Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions. J Pathol. 2008,215(3):273-9. https://doi.org/10.1002/path.2357.
Small B.A., Dressel S.A., Lawrence C.W., Drake D.R. 3rd, Stoler M.H., Enelow R.I. & Braciale T.J. CD8(+) T cell-mediated injury in vivo progresses in the absence of effector T cells. J Exp Med. 2001,194(12):1835-46. https://doi.org/10.1084/jem.194.12.1835.
Smith V., Seo D., Warty R., Payne O., Salih M., Chin K.L., Ofori-Asenso R., Krishnan S, da Silva Costa F., Vollenhoven B. & Wallace E. Maternal and neonatal outcomes associated with COVID-19 infection: A systematic review. PLoS One. 2020,4,15(6):e0234187. https://doi.org/10.1371/journal.pone.0234187.
Su S. & Jiang S. A suspicious role of interferon in the pathogenesis of SARS-CoV-2 by enhancing expression of ACE2. Signal Transduct Target Ther. 2020,21,5(1):71. https://doi.org/10.1038/s41392-020-0185-z.
Tay M.Z., Poh C.M., Rénia L., MacAry P.A. & Ng L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020,20(6):363-374. https://doi.org/10.1038/s41577-020-0311-8.
Terpos E., Ntanasis-Stathopoulos I., Elalamy I., Kastritis E., Sergentanis T.N., Politou M., Psaltopoulou T., Gerotziafas G. & Dimopoulos M.A. Hematological findings and complications of COVID-19. Am J Hematol. 2020,95(7):834-847. https://doi.org/10.1002/ajh.25829.
Tian S., Hu W., Niu L., Liu H., Xu H. & Xiao S.Y. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. J Thorac Oncol. 2020,15(5):700-704. https://doi.org/10.1016/j.jtho.2020.02.010.
Tijms M.A., van der Meer Y. & Snijder E.J. Nuclear localization of non-structural protein 1 and nucleocapsid protein of equine arteritis virus. J Gen Virol. 2002,83(Pt 4):795-800. https://doi.org/10.1099/0022-1317-83-4-795.
Timani K.A., Liao Q., Ye L., Zeng Y., Liu J., Zheng Y., Ye L., Yang X., Lingbao K., Gao J. & Zhu Y. Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res. 2005,114(1-2):23-34. https://doi.org/10.1016/j.virusres.2005.05.007.
Tseng C.T., Perrone L.A., Zhu H., Makino S. & Peters C.J. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J Immunol. 2005,174(12):7977-85. https://doi.org/10.4049/jimmunol.174.12.7977.
Uddin M.H., Zonder J.A. & Azmi A.S. Exportin 1 inhibition as antiviral therapy. Drug Discov Today. 2020,20:S1359-6446(20)30239-7. https://doi.org/10.1016/j.drudis.2020.06.014.
van Boheemen S., de Graaf M., Lauber C., Bestebroer T.M., Raj V.S., Zaki A.M., Osterhaus A.D., Haagmans B.L., Gorbalenya A.E., Snijder E.J. & Fouchier R.A. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012,20,3(6):e00473-12. https://doi.org/10.1128/mBio.00473-12.
Wan Y., Shang J., Graham R., Baric R.S. & Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020,17,94(7):e00127-20. https://doi.org/10.1128/JVI.00127-20.
Wang M., Hao H., Leeper N.J. & Zhu L, Early Career Committee. Thrombotic Regulation From the Endothelial Cell Perspectives. Arterioscler Thromb Vasc Biol. 2018,38(6):e90-e95. https://doi.org/10.1161/ATVBAHA.118.310367.
Wang N., Shi X., Jiang L., Zhang S., Wang D., Tong P., Guo D., Fu L., Cui Y., Liu X., Arledge K.C., Chen Y.H., Zhang L. & Wang X. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013,23(8):986-93. https://doi.org/10.1038/cr.2013.92.
Wilk A.J., Rustagi A., Zhao N.Q., Roque J., Martínez-Colón G.J., McKechnie J.L., Ivison G.T., Ranganath T., Vergara R., Hollis T., Simpson L.J., Grant P., Subramanian A., Rogers A.J. & Blish C.A. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020,26(7):1070-1076. https://doi.org/10.1038/s41591-020-0944-y.
World Health Organisation. (2020b) Clinical Management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected. Available online at https://apps.who.int/iris/ handle/10665/330893.
World Health Organization. (2020a) Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: interim guidance, 2 March 2020. Available online at https://apps.who.int/iris/handle/10665/331329.
Wu A., Peng Y., Huang B., Ding X., Wang X., Niu P., Meng J., Zhu Z., Zhang Z., Wang J., Sheng J., Quan L., Xia Z., Tan W., Cheng G. & Jiang T. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe. 2020a,11,27(3):325-328. https://doi.org/10.1016/j.chom.2020.02.001.
Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y., Tao Z.W., Tian J.H., Pei Y.Y., Yuan M.L., Zhang Y.L., Dai F.H., Liu Y., Wang Q.M., Zheng J.J., Xu L., Holmes E.C. & Zhang Y.Z. Author Correction: A new coronavirus associated with human respiratory disease in China. Nature. 2020,580(7803):E7. https://doi.org/10.1038/s41586-020-2202-3. Erratum for: Nature. 2020b Mar,579(7798):265-269.
Wu K.E., Fazal F.M., Parker K.R., Zou J.& Chang H.Y. RNA-GPS Predicts SARS-CoV-2 RNA Residency to Host Mitochondria and Nucleolus. Cell Syst. 2020,22,11(1):102-108.e3. https://doi.org/10.1016/j.cels.2020.06.008.
Wulan W.N., Heydet D., Walker E.J., Gahan M.E. & Ghildyal R. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Front Microbiol. 2015,2,6:553. https://doi.org/10.3389/fmicb.2015.00553.
Wurm T., Chen H., Hodgson T., Britton P., Brooks G. & Hiscox J.A. Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J Virol. 2001,75(19):9345-56. https://doi.org/10.1128/JVI.75.19.9345-9356.2001.
Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X., Li T. & Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020,24,12(1):8. https://doi.org/10.1038/s41368-020-0074-x.
Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J. & Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020,8(4):420-422. https://doi.org/10.1016/S2213-2600(20)30076-X.
Yang J., Zheng Y., Gou X., Pu K., Chen Z., Guo Q., Ji R., Wang H., Wang Y. & Zhou Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020,94:91-95. https://doi.org/10.1016/j.ijid.2020.03.017.
Yang Z.Y., Huang Y., Ganesh L., Leung K., Kong W.P., Schwartz O., Subbarao K. & Nabel G.J. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol. 2004,78(11):5642-50. https://doi.org/10.1128/JVI.78.11.5642-5650.2004.
Yilla M., Harcourt B.H., Hickman C.J., McGrew M., Tamin A., Goldsmith C.S., Bellini W.J. & Anderson L.J. SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus Res. 2005,107(1):93-101. https://doi.org/10.1016/j.virusres.2004.09.004.
Yoo D., Wootton S.K., Li G., Song C. & Rowland R.R. Colocalization and interaction of the porcine arterivirus nucleocapsid protein with the small nucleolar RNA-associated protein fibrillarin. J Virol. 2003,77(22):12173-83. https://doi.org/10.1128/jvi.77.22.12173-12183.2003.
Yoshikawa T., Hill T., Li K., Peters C.J. & Tseng C.T. Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J Virol. 2009,83(7):3039-48. https://doi.org/10.1128/JVI.01792-08.
Young R.E., Thompson R.D., Larbi K.Y., La M., Roberts C.E., Shapiro S.D., Perretti M. & Nourshargh S. Neutrophil elastase (NE)-deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo. J Immunol. 2004,172(7):4493-502. https://doi.org/10.4049/jimmunol.172.7.4493.
Yuki K., Fujiogi M. & Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol. 2020,215:108427. https://doi.org/10.1016/j.clim.2020.108427.
Zaigham M. & Andersson O. Maternal and perinatal outcomes with COVID-19: A systematic review of 108 pregnancies. Acta Obstet Gynecol Scand. 2020,99(7):823-829. https://doi.org/10.1111/aogs.13867.
Zeng H., Pappas C., Belser J.A., Houser K.V., Zhong W., Wadford D.A., Stevens T., Balczon R., Katz J.M. & Tumpey TM. Human pulmonary microvascular endothelial cells support productive replication of highly pathogenic avian influenza viruses: possible involvement in the pathogenesis of human H5N1 virus infection. J Virol. 2012,86(2):667-78. https://doi.org/10.1128/JVI.06348-11.
Zhang B., Zhou X., Qiu Y., Song Y., Feng F., Feng J., Song Q., Jia Q. & Wang J. Clinical characteristics of 82 cases of death from COVID-19. PLoS One. 2020,9,15(7):e0235458. https://doi.org/10.1371/journal.pone.0235458.
Zhang H., Penninger J.M., Li Y., Zhong N. & Slutsky A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020,46(4):586-590. https://doi.org/10.1007/s00134-020-05985-9.
Zhang Z.L., Hou Y.L., Li D.T. & Li FZ. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand J Clin Lab Invest. 2020,23:1-7. https://doi.org/10.1080/00365513.2020.1768587.
Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., Xu Y. & Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020,17(5):533-535. https://doi.org/10.1038/s41423-020-0402-2.
Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., Guan L., Wei Y., Li H., Wu X., Xu J., Tu S., Zhang Y., Chen H. & Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020,395(10229):1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3.
Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F. & Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020,579(7798):270-273. https://doi.org/10.1038/s41586-020-2012-7.
Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F. & Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020,579(7798):270-273. https://doi.org/10.1038/s41586-020-2012-7.
Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W., China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020,20,382(8):727-733. https://doi.org/10.1056/NEJMoa2001017.
Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N., Cao Y., Yousif A.S., Bals J., Hauser B.M., Feldman J., Muus C., Wadsworth M.H. 2nd, Kazer S.W., Hughes T.K., Doran B., Gatter G.J., Vukovic M., Taliaferro F., Mead B.E., Guo Z., Wang J.P., Gras D., Plaisant M., Ansari M., Angelidis I., Adler H., Sucre J.M.S., Taylor C.J., Lin B., Waghray A., Mitsialis V., Dwyer D.F., Buchheit K.M., Boyce J.A., Barrett N.A., Laidlaw T.M., Carroll S.L., Colonna L., Tkachev V., Peterson C.W., Yu A., Zheng H.B., Gideon H.P., Winchell C.G., Lin P.L., Bingle C.D., Snapper S.B., Kropski J.A., Theis F.J., Schiller H.B., Zaragosi L.E., Barbry P., Leslie A., Kiem H.P., Flynn J.L., Fortune S.M., Berger B., Finberg R.W., Kean L.S., Garber M., Schmidt A.G., Lingwood D., Shalek A.K. & Ordovas-Montanes J, HCA Lung Biological Network. Electronic address: lung-network@humancellatlas.org, HCA Lung Biological Network. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020,28,181(5):1016-1035.e19. https://doi.org/10.1016/j.cell.2020.04.035.
Zou X., Chen K., Zou J., Han P., Hao J. & Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020,14(2):185-192. https://doi.org/10.1007/s11684-020-0754-0.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Davi da Silva Barbirato; Mariana Fampa Fogacci; Pamella Oliveira de Azevedo; Carmelo Sansone; João Régis Ivar Carneiro; Maria Cynésia Medeiros de Barros
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.