Biosorción de colorante rojo escarlata directo por bagazo de yuca
DOI:
https://doi.org/10.33448/rsd-v10i4.13964Palabras clave:
Bagazo de yuca; Biosorción; Tinte textil.Resumen
La industria textil hace uso de tintes en los procesos de tintura, generando efluentes con potencial tóxico para el medio ambiente y los seres humanos, si no se tratan adecuadamente. La biosorción es una alternativa para la remoción de colorantes de matrices acuosas, siendo una técnica de bajo costo y efectiva, permitiendo también el uso de residuos agroindustriales. Por lo tanto, este trabajo tuvo como objetivo evaluar la capacidad de eliminar el tinte rojo escarlata directo utilizando bagazo de yuca como biosorbente, un residuo ampliamente generado en Brazil. El biosorbente se caracterizó en términos de su superficie específica. Inicialmente se realizaron pruebas preliminares para obtener las mejores condiciones de pH, temperatura y velocidad de rotación, y posteriormente se realizaron pruebas de equilibrio cinético y de adsorción. Se empleó un modelo matemático para comprender los mecanismos involucrados en la adsorción del tinte. El bagazo de yuca tuvo una superficie específica de 3.012 m² g-1, con presencia de microporos. Las pruebas de biosorción por lotes obtuvieron condiciones óptimas de funcionamiento a pH 2, 50 ° C y 90 rpm. En cinética, se logró una eliminación del 84% en 300 min. En las isotermas de adsorción, la capacidad máxima de adsorción de monocapa estimada por el modelo de Langmuir fue de 25,1 mg g-1. En el modelado matemático, los modelos de Pseudo-primer orden, Pseudo-segundo orden y Elovich representan datos cinéticos, lo que sugiere la ocurrencia de más de un mecanismo en el proceso, mientras que en las isotermas, los modelos de Redlich-Peterson y Toth sugieren una tendencia al Freundlich modelo. En general, el bagazo de yuca demostró ser un adsorbente eficaz para eliminar el tinte en estudio.
Citas
Ahmad, T., & Danish, M. (2018). Prospects of banana waste utilization in wastewater treatment: A review. Journal of Environmental Management, 206, 330-348.
Alvarado, N., Abarca, R. L., Urdaneta, J., Romero, J., Galotto, M. J., & Guarda, A. (2021). Cassava starch: structural modification for development of a bio-adsorber for aqueous pollutants. Characterization and adsorption studies on methylene blue. Polymer Bulletin, 78, 1087-1107.
Ayawei, N., Ebelegi, A. N., & Wankasi, D. (2017). Modelling and interpretation of adsorption isotherms. Journal of Chemistry, 3039817.
Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. Journal of the American Chemical Society, 73 (1), 373-380.
Brazilian Association of Textile and Clothing Industry. (2019). Sector Profile. https://www.abit.org.br/cont/perfil-do-setor.
Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60 (2), 309-319.
Costa, J. A. S., & Paranhos, C. M. (2019). Evaluation of rice husk ash in adsorption of Remazol Red dye from aqueous media. SN Applied Sciences, 1, 397
Dotto, G. L., & McKay, G. (2020). Current scenario and challenges in adsorption for water treatment. Journal of Environmental Chemical Engineering, 8 (4), 103988.
Elovich, S. Y., & Larinov, O. G. (1962). Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions. Izvestiya Akademii Nauk. SSSR, Otdelenie Khimicheskikh Nauk, 2, 209-216.
Escaramboni, B., Núñez, E. G. F., Carvalho, A. F. A., & Neto, P. O. (2018). Ethanol biosynthesis by fast hydrolysis of cassava bagasse using fungal amylases produced in optimized conditions. Industrial Crops and Products, 112, 368-377.
FAO (Food and Agriculture Organization of the United Nations). (2019). Production quantity of cassava in Brazil. http://www.fao.org/faostat/en/#data/QC.
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2-10.
Freitas, T. S. M., Rigueto, C. V. T., Geraldi, C. A. Q., Loss, R. A., Guedes, S. F., Aranda, D. A. G., Muchave, G. J., & Gonçalves, J. A. (2019). Biosorption of orange bagasse (Citrus sinensis L. Osbeck) in the removal of reactive blue 5G dye. Engevista, 21 (2), 256-266.
Freundlich, H. M. F. (1906). Over the Adsorption in Solution. The Journal of Physical Chemistry, 57, 385-471.
Giles, C. H., MacEwan, T. H., Nakhwa, S. N., & Smith, D. (1960). A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society, 111, 3973-3993.
Giraldo, S., Robles, I., Ramirez, A., Flórez, E., & Acelas, N. (2020). Mercury removal from wastewater using agroindustrial waste adsorbents. SN Applied Sciences, 2, 1029.
Gita, S., Hussan, A., & Choudhury, T.G. (2017). Impact of textile dyes waste on aquatic environments and its treatment. Environment Ecology, 35, 2349-2353.
Ho, Y. S., & Mckay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety and Environmental Protection, 76 (2), 183-191.
Honorio, J. F., Veit, M. T., Gonçalvez, G. C., Campos, E. A., & Fagundes-Klen, M. R. (2016). Adsorption of reactive blue BF-5G dye by soybean hulls: kinetics, equilibrium and influencing factors. Water Science & Technology, 73 (5), 1166-1174.
IUPAC. (1991). Manual on Catalyst Characterization. Pure and Applied Chemistry, 63, 1227-1246.
Kosasih, A. N., Febrianto, J., Sunarso, J., Ju, Y., Indraswati, & Ismadji, S. (2010). Sequestering of Cu(II) from aqueous solution using cassava peel (Manihot esculenta). Journal of Hazardous Materials, 180 (1-3), 366-374.
Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska VetenskapsAkademiens Handlingar, 24 (4), 1-39.
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361-1403.
Marin, P., Borba, C. E., Módenes, A. N., Oliveira, S. P. D., Figueiredo, L. S., & Passaia, N. (2015). Avaliação do efeito da temperatura, pH e granulometria do adsorvente na adsorção do corante azul reativo 5g. Engevista, 17, 59-68.
Marques, B. S., Frantz, T. S., Cadaval Junior, T. R. S., Pinto, L. A. A., & Dotto, G. L. (2019). Adsorption of a textile dye onto piaçava fibers: kinetic, equilibrium, thermodynamics, and application in simulated effluents. Environmental Science and Pollution Research, 26, 28584-28592.
Módenes, A. N., Espinoza-Quiñones, F. R., Geraldi, C. A. Q., Manenti, D. R., Trigueros, D. E. G., Oliveira, A. P., Borba, C. E., & Kroumov, A. D. (2015). Assessment of the banana pseudostem as a low-cost biosorbent for the removal of reactive blue 5G dye. Environmental Technology, 36 (22), 2892-2902.
Moussavi, G., & Mahmoudi, M. (2009). Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials, 168, 806-812.
Munagapati, V. S., Yarramuthi, V., Kim, Y., Lee, K. M., & Kim, D. (2018). Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicology and Environmental Safety, 148, 601-607.
Pandey, A., Soccol, C. R., Nigam, P., Soccol, V. T., Vandenberghe, L. P. S., & Mohan, R. (2000). Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresource Technology, 74 (1), 81-87.
Piccin, J. S., Cadaval Jr, T. R. S., Pinto, L. A. A., & Dotto, G. L. (2017). Adsorption isotherms in liquid phase: experimental, modeling, and interpretations. In: Bonilla-Petriciolet, A., Mendonza-Castillo, & A. D. I., Reynel-Ávila, H.E. (Orgs.). Adsorption processes for water treatment and purification. Cham: Springer, 19-51.
Piccin, J. S., Dotto, G. L., Vieira, M. L. G., & Pinto, L. A. A. (2011). Kinetics and mechanism of the food dye FD&C red 40 adsorption onto chitosan. Journal of Chemical & Engineering Data, 56, 3759-3765.
Piccin, J. S., Gomes, C. S., Ferris, L. A., & Gutterres, M. (2012). Kinetics and isotherms of leather dye adsorption by tannery solid waste. Chemical Engineering Journal, 183, 30-38.
Polachini, T. C., Betiol, L. F. L., Lopes-Filho, J. F., & Telis-Romero, J. (2016). Water adsorption isotherms and thermodynamic properties of cassava bagasse. Thermochimica Acta, 632, 79-85.
Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. The Journal of Physical Chemistry, 63 (6), 1024.
Rigueto, C. V. T., Fonseca, F. C. A., Zanella, B. B., Rosseto, M., Piccin, J. S., Dettmer, A., & Geraldi, C. A. Q. (2019). Adsorption study with NaOH chemically treated soybean hull for textile dye removal. Revista Ibero-Americana de Ciências Ambientais, 10 (5), 161-168.
Rigueto, C. V. T., Nazari, M. T., Rosseto, M., Massuda, L. A., Alessandretti, I., Piccin, J. S., & Dettmer, A. (2021)b. Emerging contaminants adsorption by beads from chromium (III) tanned leather waste recovered gelatin. Journal of Molecular Liquids, 330, 115638.
Rigueto, C. V. T., Nazari, M. T., Souza, C. F., Cadore, J. S., Brião, V. B., & Piccin, J. S. (2020)a. Alternative techniques for caffeine removal from wastewater: An overview of opportunities and challenges. Journal of Water Process Engineering, 35, 101231.
Rigueto, C. V. T., Piccin, J. S., Dettmer, A., Rosseto, M., Dotto, G. L., Schmitz, A. P. O., Perondi, D., Freitas, T. S. M., Loss, R. A., & Geraldi, C. A. Q. (2020)b. Water hyacinth (Eichhornia crassipes) roots, an amazon natural waste, as an alternative biosorbent to uptake a reactive textile dye from aqueous solutions. Ecological Engineering, 150, 105817.
Rigueto, C. V. T., Rosseto, M., Nazari, M. T., Ostwald, B. E. P., Alessandretti, I., Manera, C., Piccin, J. S., & Dettmer, A. (2021)a. Adsorption of diclofenac sodium by composite beads prepared from tannery wastes-derived gelatin and carbon nanotubes. Journal of Environmental Chemical Engineering, 9(1), 105030.
Sun, W., Sun., W., & Wang, Y. (2019). Biosorption of Direct Fast Scarlet 4BS from aqueous solution using the green-tide-causing marine algae Enteromorpha prolifera. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 223, 117347.
Toth, J. (1971). State equations of the solid gas interface layer. Acta Chimica Academiae Scientiarum Hungaricae, 69, 311-317.
Vargas, A. M. M., Cazetta, A. L., Kunita, M. H., Silva, T. L., & Almeida, V. C. (2011). Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models. Chemical Engineering Journal, 168, 722-730.
Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172-184.
Zhuo, N., Lan, Y., Yang, W., Yang, Z., Li, X., Zhou, X., Liu, Y., Shen, J., & Zhang, X. (2017) Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/natural polymer composite beads. Separation and Purification Technology, 177, 272-280.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Ingridy Alessandretti; Regiane Ribeiro de Jesus ; Sumaya Ferreira Guedes ; Raquel Aparecida Loss ; Juliana Maria de Paula; Claudineia Aparecida Queli Geraldi
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.