Rendimiento de los granos y los parámetros fisiológicos del intercambio de gases del frijol en función de la fertilización con cobre
DOI:
https://doi.org/10.33448/rsd-v10i4.14234Palabras clave:
Fertilización foliar; Cubrir la fertilización; Micronutrientes; Fotosíntesis; Calidad fisiológica.Resumen
El estudio en la campaña fue realizado para investigar las respuestas de los parámetros nutricionales, fisiológicos, productivos y económicos del frijol común (Phaseolus vulgaris L.) después de la aplicación de fertilizante de cobre, en hojas y suelo. Para el ensayo se empleó un diseño de bloques completo al azar, con arreglo factorial 2x5 en seis repeticiones. El primer factor fue el tipo de la aplicación de fertilizante. El segundo fue los doses de cobre: 0, 1, 2, 3 y 4 kg ha-1. Las diferencias entre medias de tratamientos fueron comparadas utilizando variancia y la prueba de F (p-valor < 0,05) y los valores cualitativos y la regresión polinomial la prueba Scott & Knott. Las variables en estudio fueron: los niveles de nitrógeno y cobre en las hojas, el índice relativo de clorofila (ICR), los intercambios de gases, eficiencia fotoquímica de fotosistema II y el rendimiento de granos. La aplicación en suelo fue más responsiva para los niveles de Cu (4% y 28%) en las hojas a los 24 y 45 días después de la germinación, respectivamente. La fotosíntesis liquida alcanzó el índice máximo de 18,77 µmol m-2 s-1 con fertilización de Cu de 4 kg ha-1 en las hojas. La aplicación de 2,0 kg Cu ha-1 fue el que proporcionó los más grandes rendimientos de granos; mientras tanto, la aplicación en suelo ha tenido 12% más expresión que la aplicación en las hojas. La fertilización en suelo demostró ser más eficiente de absorción de Cu y clorofila (IRC) sobre todo a la dosis de 2 kg ha-1. Esta misma dosis proporcionó lo mejor gano diferencial, con cerca de US$ 581,96 ha-1 y US$ 503,01 ha-1 para la aplicación en suelo y en las hojas, respectivamente.
Citas
Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507
Alves, B. J. R., Smith, K. A., Flores, R. A., Cardoso, A. S., Oliveira, W. R. D., Jantalia, C. P., Urquiaga, S., & Boddey, R. M. (2012). Selection of the most suitable sampling time for static chambers for the estimation of daily mean N 2O flux from soils. Soil Biology and Biochemistry, 46, 129–135. https://doi.org/10.1016/j.soilbio.2011.11.022
Amaral, J. A. T. do, Rena, A. B., & Amaral, J. F. T. do. (2006). Crescimento vegetativo sazonal do cafeeiro e sua relação com fotoperíodo, frutificação, resistência estomática e fotossíntese. Pesquisa Agropecuaria Brasileira, 41(3), 377–384. https://doi.org/10.1590/s0100-204x2006000300002
Barbosa Filho, M. P., Cobucci, T., Fageria, N. K., & Mendes, P. N. (2008). Determinação da necessidade de adubação nitrogenada de cobertura no feijoeiro
irrigado com auxílio do clorofilômetro portátil. Ciencia Rural, 38(7), 1843–1848. https://doi.org/10.1590/S0103-84782008000700007
Barbosa, J. C., & Maldonado Júnior, W. (2015). AgroEstat: Sistema para análises estatísticas de ensaios agronômicos. Faculdade de Ciências Agrárias e Veterinárias UNESP.
Boone, C., Gervais, J. A., Luukinen, B., Buhl, K., & Stone, D. (2012). Copper Sulfate Technical Fact Sheet. National Pesticide Information Center.
Brunetto, G., Bastos de Melo, G. W., Terzano, R., Del Buono, D., Astolfi, S., Tomasi, N., Pii, Y., Mimmo, T., & Cesco, S. (2016). Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere, 162, 293–307. https://doi.org/10.1016/j.chemosphere.2016.07.104
Brunetto, G., Comin, J. J., Miotto, A., de Moraes, M. P., Sete, P. B., Schmitt, D. E., Gatiboni, L. C., de Melo, G. W. B., & Morais, G. P. (2018). Copper and zinc accumulation, fractionation and migration in vineyard soils from Santa Catarina State, Brazil. Bragantia, 77(1), 141–151. https://doi.org/10.1590/1678-4499.2016391
Cakmak, I. (2000). Tansley review no. 111: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, 146(2), 185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x
Carvalho, C.S., & Fernandes, M. N. (2019). Effects of copper toxicity at different pH and temperatures on the in vitro enzyme activity in blood and liver of fish, Prochilodus lineatus. Molecular Biology Reports, 46(5), 4933–4942. https://doi.org/10.1007/s11033-019-04944-y
Casaroli, D., Rodrigues, T. R., Martins, A. P. B., Evangelista, A. W. P., & Júnior, J. A. (2018). Rainfall and evapotranspiration patterns in Goiânia, GO. Revista Brasileira de Meteorologia, 33(2), 247–256. https://doi.org/10.1590/0102-7786332004
Casierra-Posada, F., Peña-Olmos, J. E., & Ulrichs, C. (2011). Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) afectadas por la calidad de la luz: Implicaciones agronómicas. Actual Divulgacion Científica, 14(2), 43–53.
Ceretta, C. A., Girotto, E., Lourenzi, C. R., Trentin, G., Vieira, R. C. B., & Brunetto, G. (2010). Nutrient transfer by runoff under no tillage in a soil treated with successive applications of pig slurry. Agriculture, Ecosystems and Environment, 139(4), 689–699. https://doi.org/10.1016/j.agee.2010.10.016
Cesar, G., & Grando, N. (2006). O uso de micronutrientes na maximização da produção. Visão Agrícola, 5, 24–26.
Chandra, R., & Kang, H. (2016). Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Science and Technology, 12(2), 55–61. https://doi.org/10.1080/21580103.2015.1044024
Chaves, L. H. G., Mesquita, E. F. de, Araujo, D. L. de, & França, C. P. de. (2010). Crescimento, distribuição e acúmulo de cobre e zinco em plantas de pinhão-manso. Revista Ciência Agronômica, 41(2), 167–176. https://doi.org/10.1590/s1806-66902010000200001
Chen, Y. X., Yuan, P. W., Lin, Q., & Yong, M. L. (2005). Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environment International, 31(6), 861–866. https://doi.org/10.1016/j.envint.2005.05.044
CONAB. (2020). Acompanhamento da Safra Brasileira de grãos. In Companhia Nacional de Abastecimento (Vol. 7, Issue 8).
Cumplido-Nájera, C. F., González-Morales, S., Ortega-Ortíz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horticulturae, 245(245), 82–89. https://doi.org/10.1016/j.scienta.2018.10.007
Da, I., Mistura, S., & Sociedade, E. D. A. (2011). Sigma-Aldrich. 1907, 1–6.
Deng, X. P., Cheng, Y. J., Wu, X. B., Kwak, S. S., Chen, W., & Eneji, A. E. (2012). Exogenous hydrogen peroxide positively influences root growth and exogenous hydrogen peroxide positively influences root growth and metabolism in leaves of sweet potato seedlings. Australian Journal of Crop Science, 6(11), 1572–1578.
Eser, A., & Aydemir, T. (2016). The effect of kinetin on wheat seedlings exposed to boron. Plant Physiology and Biochemistry, 108, 158–164. https://doi.org/10.1016/j.plaphy.2016.06.024
Fageria, N. K., Baligar, V. C., & Li, Y. C. (2008). The role of nutrient efficient plants in improving crop yields in the twenty first century. Journal of Plant Nutrition, 31(6), 1121–1157. https://doi.org/10.1080/01904160802116068
FAO. (2014). World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports No. 106. https://doi.org/10.1017/S0014479706394902
Ferreira, Manuel Evaristo Cruz, M. C. P. (1991). Micronutrientes na agricultura (M. C. P. Ferreira, Manuel Evaristo Cruz (Ed.)). POTAFOS/CNPq.
Flores, R. A., da Cunha, P. P., Damin, V., Abdala, K. de O., Maranhão, D. D. C., dos Santos, M. M., Neto, L. R. G., Donegá, M. C., & Rodrigues, R. A. (2019). Physiological quality and grain production of Phaseolus vulgaris (cv. BRS Pérola) using boron (B) application under irrigatation system. Australian Journal of Crop Science, 13(4), 520–528. https://doi.org/10.21475/ajcs.19.13.04.p1383
Flores, R. A., Rodrigues, R. A., da Cunha, P. P., Damin, V., Arruda, E. M., de Oliveira Abdala, K., & Donegá, M. C. (2018). Grain yield of phaseolus vulgaris in a function of application of boron in soil. Journal of Soil Science and Plant Nutrition, 18(1), 144–156. https://doi.org/10.4067/S0718-95162018005000701
Flores, R. A., Silva, R. G. da, Cunha, P. P. da, Damin, V., Abdala, K. de O., Arruda, E. M., Rodrigues, R. A., & Maranhão, D. D. C. (2017). Economic viability of Phaseolus vulgaris (BRS Estilo) production in irrigated system in a function of application of leaf boron. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 67(8), 697–704. https://doi.org/10.1080/09064710.2017.1329454
Flores, R. A., Silva Junior, A. R., Damin, V., Arruda, E. M., Prado, E. R., & Araújo, C. E. (2017). Nutrition and Production of Phaseolus vulgaris (BRS estilo) Following Boron Application on Soil. Communications in Soil Science and Plant Analysis, 48(12), 1409–1416. https://doi.org/10.1080/00103624.2017.1358744
Floss, E. L. (2008). Fisiologia das plantas cultivadas: o estudo do que está por trás do que se vê. UPF.
Fu, L., Chen, C., Wang, B., Zhou, X., Li, S., Guo, P., Shen, Z., Wang, G., & Chen, Y. (2015). Differences in copper absorption and accumulation between copper-exclusion and copper-enrichment plants: A comparison of structure and physiological responses. Plos One, 10(7), 1–18. https://doi.org/10.1371/journal.pone.0133424
Gadallah, M. A. A., & El-Enany, A. E. (1999). Role of kinetin in alleviation of copper and zinc toxicity in Lupinus termis plants. Plant Growth Regulation, 29(3), 151–160. https://doi.org/10.1023/A:1006245628188
Grohskopf, M. A., Correa, J. C., Cassol, P. C., Nicoloso, R. S., & Fernandes, D. M. (2016). Copper and zinc forms in soil fertilized with pig slurry in the bean crop | Formas de cobre e zinco no solo adubado com dejeto suíno na cultura do feijão. Revista Brasileira de Engenharia Agricola e Ambiental, 823–829. https://doi.org/10.1590/1807-1929/agriambi.v20n9p823-829
Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259–266. https://doi.org/10.1016/j.pbi.2009.05.006
Hasanuzzaman, M., Davies, N. W., Shabala, L., Zhou, M., Brodribb, T. J., & Shabala, S. (2017). Residual transpiration as a component of salinity stress tolerance mechanism: A case study for barley. BMC Plant Biology, 17(1), 1–12. https://doi.org/10.1186/s12870-017-1054-y
Hu, Y., Ge, Y., Zhang, C., Ju, T., & Cheng, W. (2009). Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regulation, 59(1), 51–61. https://doi.org/10.1007/s10725-009-9387-7
Hummes, A. P., Bortoluzzi, E. C., Tonini, V., da Silva, L. P., & Petry, C. (2019). Transfer of copper and zinc from soil to grapevine-derived products in young and centenarian vineyards. Water, Air, and Soil Pollution, 230(7), 1–11. https://doi.org/10.1007/s11270-019-4198-6
IBEGE-PAM. (2020). Pesquisa Agrícola Municipal. https://sidra.ibge.gov.br/Tabela/1612
Justel, F. J., Claros, M., & Taboada, M. E. (2015). Solubilities and physical properties of saturated solutions in the copper sulfate + sulfuric acid + seawater system at different temperatures. Brazilian Journal of Chemical Engineering, 32(3), 629–635. https://doi.org/10.1590/0104-6632.20150323s00003393
Karamanos, R. E., Pomarenski, Q., Goh, T. B., & Flore, N. A. (2004). The effect of foliar copper application on grain yield and quality of wheat. Canadian Journal of Plant Science, 84(1), 47–56. https://doi.org/10.4141/P03-090
Kempers, L. J. T. M. (1989). A thermodynamic theory of the Soret effect in a multicomponent liquid. The Journal of Chemical Physics, 90(11), 6541–6548. https://doi.org/10.1063/1.456321
Kerbauy, G. B. (2004). Fisiologia Vegetal. Editora Guanabara Koogan S.A.
Khan, M. I. R., Khan, N. A., Masood, A., Per, T. S., & Asgher, M. (2016). Hydrogen peroxide alleviates nickel-inhibited photosynthetic responses through increase in use-efficiency of nitrogen and sulfur, and glutathione production in mustard. Frontiers in Plant Science, 7, 1–20. https://doi.org/10.3389/fpls.2016.00044
Kumar, V., Brainard, D. C., & Bellinder, R. R. (2009). Effects of spring-sown cover crops on establishment and growth of hairy galinsoga (galinsoga ciliata) and four vegetable crops. HortScience, 44(3), 730–736. https://doi.org/10.21273/hortsci.44.3.730
Lange, B., Pourret, O., Meerts, P., Jitaru, P., Cancès, B., Grison, C., & Faucon, M. P. (2016). Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. Chemosphere, 146, 75–84. https://doi.org/10.1016/j.chemosphere.2015.11.105
Łukasik, I., Goławska, S., & Wójcicka, A. (2012). Effect of cereal aphid infestation on ascorbate content and ascorbate peroxidase activity in triticale. Polish Journal of Environmental Studies, 21(6), 1937–1941.
Ma, J. F., Yamaji, N., & Mitani-Ueno, N. (2011). Transport of silicon from roots to panicles in plants. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 87(7), 377–385. https://doi.org/10.2183/pjab.87.377
Ma, Y., & Niu, J. (2017). The role of phytosphingosine-1-phosphate (Phyto-S1P) and its relationships with cytosolic pH and hydrogen peroxide (H2O2) during stomatal closure by darkness in broad bean. South African Journal of Botany, 108, 237–242. https://doi.org/10.1016/j.sajb.2016.11.002
Malavolta., E. (2006). Manual de nutrição mineral de plantas. Editora Agronômica Ceres Ltda.
Marschner. (2012). Mineral nutrition of higher plants. 3rd ed. Elsevier. https://doi.org/10.1016/C2009-0-63043-9
Mathobo, R., Marais, D., & Steyn, J. M. (2017). The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180, 118–125. https://doi.org/10.1016/j.agwat.2016.11.005
Medina, S., Vicente, R., Nieto-Taladriz, M. T., Aparicio, N., Chairi, F., Vergara-Diaz, O., & Araus, J. L. (2019). The plant-transpiration response to vapor pressure deficit (VPD) in durum wheat is associated with differential yield performance and specific expression of genes involved in primary metabolism and water transport. Frontiers in Plant Science,, 1–19. https://doi.org/10.3389/fpls.2018.01994
Mesquita, M. A. M., da Silveira, P. M., Leandro, W. M., Flores, R. A., & Maranhão, D. D. C. (2018). DRIS standards for nutritional evaluation of Phaseolus vulgaris in Cerrado, Goiás state, Brazil. Australian Journal of Crop Science, 12(2), 274–280. https://doi.org/10.21475/ajcs.18.12.02.pne766
Miorini, T. J. J., Raetano, C. G., & Everhart, S. E. (2017). Control of white mold of dry bean and residual activity of fungicides applied by chemigation. Crop Protection, 94, 192–202. https://doi.org/10.1016/j.cropro.2016.12.023
Moreira, A., & Moraes, L. A. C. (2019). Soybean response to copper applied to two soils with different levels of organic matter and clay. Journal of Plant Nutrition, 42(18), 2247–2258. https://doi.org/10.1080/01904167.2019.1655039
Nazir, F., Hussain, A., & Fariduddin, Q. (2019). Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere, 230, 544–558. https://doi.org/10.1016/j.chemosphere.2019.05.001
Noctor, G., Reichheld, J. P., & Foyer, C. H. (2018). ROS-related redox regulation and signaling in plants. Seminars in Cell and Developmental Biology, 80, 3–12. https://doi.org/10.1016/j.semcdb.2017.07.013
Noronha, J. F. (1987). Projetos agropecuários: administração financeira, orçamento e viabilidade econômica (2 th). Atlas.
Nóvoa-Muñoz, J. C., Arias-Estévez, M., Pérez-Novo, C., & López-Periago, J. E. (2008). Diffusion-induced changes on exchangeable and organic bound copper fractions in acid soil samples enriched with copper. Geoderma, 148(1), 85–90. https://doi.org/10.1016/j.geoderma.2008.09.009
Oliveira, T. C., Silva, J., Salgado, F. H. M., Sousa, S. A., & Fidelis, R. R. (2012). Eficiência e resposta à aplicação de fósforo em feijão comum em solos de cerrado. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 7(1), 16–24.
Paula, L. de S., Silva, B. do C., de Pinho, W. C. S., Barbosa, M. A. M., Guedes-Lobato, E. M. S., Segura, F. R., Batista, B. L., Júnior, F. B., & Lobato, A. K. da S. (2015). Silicon (Si) ameliorates the gas exchange and reduces negative impacts on photosynthetic pigments in maize plants under Zinc (Zn) toxicity. Australian Journal of Crop Science, 9(10), 901–908.
Pires, M. V., Filla, V. A., Coelho, A. P., Leal, T., Víctor, J., Bettiol, T., & Lemos, L. B. (2020). Desempenho agronômico e qualitativo de cultivares de feijoeiro dos grupos comerciais carioca e especial na época de inverno. Reivista de la Faculdade de Agronomia, L
a Plata 119, 1–8. https://doi.org/10.24215/16699513e046
Plaza, C., Courtier-Murias, D., Fernández, J. M., Polo, A., & Simpson, A. J. (2013). Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: A central role for microbes and microbial by-products in C sequestration. Soil Biology and Biochemistry, 57, 124–134. https://doi.org/10.1016/j.soilbio.2012.07.026
Prado, R. de M. (2008). Nutrição de Plantas. In Editora Unesp (1 th, Vol. 1).
Reddy, K. R., & Zhao, D. (2005). Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. Field Crops Research, 94(2–3), 201–213. https://doi.org/10.1016/j.fcr.2005.01.004
Rehman, M., Liu, L., Wang, Q., Saleem, M. H., Bashir, S., Ullah, S., & Peng, D. (2019). Copper environmental toxicology, recent advances, and future outlook: a review. Environmental Science and Pollution Research, 26(18), 18003–18016. https://doi.org/10.1007/s11356-019-05073-6
Ribeiro, N. D., Maziero, S. M., Prigol, M., Nogueira, C. W., Rosa, D. P., & Possobom, M. T. D. F. (2012). Mineral concentrations in the embryo and seed coat of common bean cultivars. Journal of Food Composition and Analysis, 26(1–2), 89–95. https://doi.org/10.1016/j.jfca.2012.03.003
Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., & Ok, Y. S. (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research, 23(3), 2230–2248. https://doi.org/10.1007/s11356-015-5697-7
Román, R. A. A., Cortez, J. W., Oliveira, J. R. G. di, & Ferreira, M. da C. (2019). Pulverização de fungicida na cultura da soja em função de ponta e volumes de aplicação. Parte 1: Avaliação de cobertura. IV Sintag – Simpósio Internacional de Tecnologia de Aplicação de Agrotoxicos, 4, 25–28.
Rosolem, C. A., & Marubayashi, O. M. (1994). Nutrição e adubação do feijoeiro. Informações Agronômicas, 68, 1–16.
Rucińska-Sobkowiak, R. (2016). Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum, 38(11). https://doi.org/10.1007/s11738-016-2277-5
Santos, H. G. dos, Jacomine, P. K. T., Anjos, L. H. C. dos, Oliveira, V. A. de, Lumbreras, J. F., Coelho, M. R., Almeida, J. A. de, Araujo Filho, J C de
Oliveira, J. B. de, & Cunha, T. J. F. (2018). Brazilian Soil Classification System (5 th). Embrapa.
Santos, L. T. S., Vespucci, I. L., & Nunes, M. P. C. (2020). Aplicação adicional de bioestimulantes em estádio reprodutivo de feijão comum (Phaseolus vulgaris l.) com intuito de acréscimo na produtividade. Pubvet, 14(3), 1–7. https://doi.org/10.31533/pubvet.v14n3a533.1-7
Schönherr, J. (2006). Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. Journal of Experimental Botany, 57(11), 2471–2491. https://doi.org/10.1093/jxb/erj217
Shabbir, Z., Sardar, A., Shabbir, A., Abbas, G., Shamshad, S., Khalid, S., Natasha, Murtaza, G., Dumat, C., & Shahid, M. (2020). Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere, 259, 127436. https://doi.org/10.1016/j.chemosphere.2020.127436
Silva, A. J., Nascimento, C. W., da Gouveia-Neto, A. S., & Silva Junior, E. A. (2015). Efeitos do silício no alívio da toxicidade de arsênio em plantas de milho. Revista Brasileira de Ciencia Do Solo, 39(1), 289–296. https://doi.org/10.1590/01000683rbcs20150176
Silva, F. C. da. (2009). Manual of chemical analyzes of soils, plants and fertilizers (2 th). Embrapa Informação Tecnológica.
Silva, F. O., & Wander, A. E. (2013). O feijão-comum no Brasil: passado, presente e futuro. Documentos Embrapa Arroz e Feijão, 287, 1–63.
Singh, J. S., Jain, D. K., Bhushan, A B. (2016). Fertilization : A Review. January 2013, 258–320. https://doi.org/10.13140/RG.2.1.1629.3844
Sonmez, S., Kaplan, M., Sonmez, N. K., Kaya, H., & Uz, I. (2006). High level of copper application to soil and leaves reduce the growth and yield of tomato plants. Scientia Agricola, 63(3), 213–218. https://doi.org/10.1590/S0103-90162006000300001
Soratto, R. P., de Carvalho, M. A. C., & Arf, O. (2004). Teor de clorofila e produtividade do feijoeiro em razão da adubação nitrogenada. Pesquisa Agropecuaria Brasileira, 39(9), 895–901. https://doi.org/10.1590/s0100-204x2004000900009
Sousa, D. M. G. de, & Lobato, E. (2004). Cerrado: Correction of soil and fertilization. In Embrapa Cerrados (2 th).
Souza, H. A. de, Hernandes, A., Romualdo, L. M., Rozane, D. E., Natale, W., & Barbosa, J. C. (2011). Folha diagnóstica para avaliação do estado nutricional do feijoeiro. Revista Brasileira de Engenharia Agricola e Ambiental, 15(12), 1243–1250. https://doi.org/10.1590/s1415-43662011001200005
Suassuna, J. F., Melo, A. S., Sousa, M. S. S., Costa, F. S., Fernandes, P. D., Pereira, V. M., & Brito, M. E. B. (2010). Desenvolvimento e eficiência fotoquímica em mudas de híbrido de maracujazeiro sob lâminas de água. Bioscience Journal, 4(1).
Sun, Q., Li, T., Alva, A. K., & Li, Y. C. (2019). Mobility and fractionation of copper in sandy soils. Environmental Pollutants and Bioavailability, 31(1), 18–23. https://doi.org/10.1080/09542299.2018.1558114
Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (Eds.). (2017). Manual de métodos de análise de solo (3 th). Embrapa.
Teixeira, P. H., Lima, R. C., Bonicontro, B. F., Mendes, O. L., Soares, B. A., Carneiro, J. E. S., Paula Júnior, T. J., & Vieira, R. F. (2019). Management of white mold in common bean using partial resistance and fungicide applications. Crop Protection. https://doi.org/10.1016/j.cropro.2019.104867
Uribe, E. G., & Stark, B. (1982). Inhibition of photosynthetic energy conversion by cupric ion. Plant Physiology, 69(5), 1040–1045. https://doi.org/10.1104/pp.69.5.1040
Xiaoli, N., Hanmi, Z., Xiukang, W., Tiantian, H., Puyu, F., Ting, L., Na, Z., & Dongxue, Y. (2020). Changes in root hydraulic conductance in relation to the overall growth response of maize seedlings to partial root-zone nitrogen application. Agricultural Water Management, 229. https://doi.org/10.1016/j.agwat.2019.105839
Xiong, Z. T., Liu, C., & Geng, B. (2006). Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinensis Rupr. Ecotoxicology and Environmental Safety, 64(3), 273–280. https://doi.org/10.1016/j.ecoenv.2006.02.003
Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17(1), 145–156. https://doi.org/10.1590/s1677-04202005000100012
Zabotto, A. R., França, W. S., Domingos, M., Rinaldi, M. C. S., Kanashiro, S., Ferreira, M. L., & Tavares, A. R. (2020). Copper accumulation and distribution
in two arboreal species of the Atlantic Forest. Floresta e Ambiente, 27(1), 1–7. https://doi.org/10.1590/2179-8087.002719
Zhou, L., Hou, H., Yang, T., Lian, Y., Sun, Y., Bian, Z., & Wang, C. (2018). Exogenous hydrogen peroxide inhibits primary root gravitropism by regulating auxin distribution during Arabidopsis seed germination. Plant Physiology and Biochemistry, 1(28) 126–133. https://doi.org/10.1016/j.plaphy.2018.05.014
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Amanda Magalhães Bueno; Rilner Alves Flores; Aline Franciel de Andrade; Marco Aurelio Pessoa de Sousa; Nícolas Gomes Pedreira; Leonardo Santos Collier; Klaus de Oliveira Abdala; Marcio Mesquita; Glenio Guimarães Santos
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.