Procesos oxidativos avanzados aplicados en la tratamiento de efluentes de la producción de membranas: revisión de literatura
DOI:
https://doi.org/10.33448/rsd-v10i4.14253Palabras clave:
Membranas poliméricas; Inversión de fase; Alternativas sostenibles; Aguas residuales.Resumen
La aplicación de nuevas tecnologías y la investigación en el tratamiento del agua son las formas de minimizar los impactos ocasionados al medio ambiente y la mejora de los recursos hídricos y, en consecuencia, los económicos y sociales de una región. Entre las tecnologías, destacamos los procesos oxidativos avanzados (POA's), que se basan en el uso de especies altamente oxidantes para promover una degradación más efectiva del contaminante a tratar. Este trabajo tiene como objetivo realizar una revisión de los POA, que son: fotocatálisis con dióxido de titanio (TiO2)/ultravioleta (UV), foto-fenton y peróxido de hidrógeno (H2O2)/UV, identificando los procesos más adecuados según el contaminante ser tratado. Los POA’s son una opción para degradar contaminantes orgánicos que tienen una alta estabilidad química, debido a la ineficacia de los métodos comunes de tratamiento de efluentes que son difíciles de degradar. Además, los POA's emergen como una tecnología donde es más eficiente en el tratamiento de efluentes a un bajo costo operativo. Por tanto, los POA's tienen un gran potencial para ser aplicados en el tratamiento de diversos efluentes obtenidos de los disolventes utilizados en la producción de membranas.
Citas
Afsharnia, M., Kianmehr, M., Biglari, H., Dargahi, A., Karimi, A. (2018). Disinfection of dairy wastewater effluent through solar photocatalysis processes. Water Science and Engineering. 11(3), 214-219. https://doi.org/10.1016/j.wse.2018.10.001
Ameta, S. C. Introduction. In. Ameta, S. C., Ameta, R. (Organizadores). (2018). Advanced Oxidation Processes for Waste Water Treatment: Emerging Green Chemical Technology. Academic Press, 1-12. ISBN: 0128105259
Anadão, P. (2010). Ciência e Tecnologia de Membranas. Artliber Editora Ltda. ISBN: 8588098504.
Arcanjo, G. S., Mounteer, A. H., Bellato, C. R., Da Silva, L. M. M., Dias, S. H. B., Da Silva, P. R. (2018). Heterogeneous photocatalysis using TiO2 modified with hydrotalcite and iron oxide under UV–visible irradiation for color and toxicity reduction in secondary textile mill effluent. Journal of Environmental Management. 211, 154-163. https://doi.org/10.1016/j.jenvman.2018.01.033
Arimi, M. M. (2017). Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent. Progress in Natural Science: Materials International, 27 (2), 275-282. https://doi.org/10.1016/j.pnsc.2017.02.001
Athanasekou, C. P., Likodimos, V., Falaras, P. (2018). Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. Journal of Environmental Chemical Engineering, 6 (6), 7386-7394. https://doi.org/10.1016/j.jece.2018.07.026
Baker, R. W. (2004). Membrane Technology and Applications, Second Edition, (Eletrônico), John Wiley & Sons Inc. ISBN: n0-470-85445-6
Bauer, R., Waldner, G., Fallmann, H., Hagner, M., Krutzler, T., Malato, S., Maletzky, P. (1999). The photo-fenton reaction and the TiO2/UV process for waste water treatment− novel developments. Catalysis Today, 53 (1), 131-144. https://doi.org/10.1016/S0920-5861(99)00108-X
Bila, D. M., Azevedo, E. B., Dezotti, M. (2008). Ozonização e Processos Oxidativos Avançados. In. Dezotti, M. Processos e Técnicas para o Controle Ambiental de Efluentes Líquidos. Rio de Janeiro, E-papers, 243-308. ISBN: 9788576501732
Brasil, Lei. Ministério do Meio Ambiente. Conselho Nacional de Meio Ambiente - Conama. (2005). Resolução nº 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes e altera a Resolução nº 357. http://www.suape.pe.gov.br/images/publicacoes/CONAMA_n.430.2011.pdf
Brito, N. N., Silva, V. B. M. (2012). Processo Oxidativo Avançado e Sua Aplicação Ambiental. Revista eletrônica de engenharia civil, 1 (3), 36-47. https://doi.org/10.5216/reec.v3i1.17000
Chang, C., Chen, J., Lu, M., Yang, H. (2005). Photocatalytic oxidation of gaseous DMF using thin film TiO2 photocatalyst. Chemosphere, 58 (8), 1071-1078. https://doi.org/10.1016/j.chemosphere.2004.09.072
Chen, Z., Su, H., Hu, D., Jia, F., Li, Z., Cui, Y., Ran, C., Wang, Z., Xu, J., Xiao, T., Li, X., Wang, H. Effect of organic loading rate on the removal of DMF, MC and IPA by a pilot-scale AnMBR for treating chemical synthesis-based antibiotic solvent wastewater. Chemosphere, v. 198, p. 49-58, 2018. https://doi.org/10.1016/j.chemosphere.2018.01.091
Cheng, X., Zu, L., Jiang, Y., Shi, D., Cai, X., Ni, Y., Lin, S., Qin, Y. (2018). A titanium-based photo-fenton bifunctional catalyst of mp-mxene/TiO2 nanodots for dramatic enhancement of the catalutic efficiency is advanced oxidation processes. Chemical Communications, 54, 11622-11625. http://www.rsc.org/suppdata/c8/cc/c8cc05866k/c8cc05866k1.pdf
Dias, F. F., Silva, P. B. V., Santos, A. F. M. S., Andrade, J. G. P., Albuquerque, I. L. T. (2018). Tratamento de efluente têxtil através de processo oxidativo avançado (H2O2/TiO2/UV). Revista Geama - Ciências Ambientais e Biotecnologia, 4(3), 4-9. http://www.ead.codai.ufrpe.br/index.php/geama/article/view/2100
Domènec, X., Jardim, W.,Litter, M. I. (2001). Processos avanzados de oxidación para la eliminación de contaminantes. In: Eliminación de Contaminantes por Fotocatálisis Heterogénea, 3-26. https://www.researchgate.net/publication/237764122
Dou, P., Song, J., Zhao, S., Xu, S., Li, X., He, T. (2019). Novel low cost hybrid extraction-distillation-reverse osmosis process for complete removal of N, N-dimethylformamide from industrial wastewater. Process Safety and Environmental Protection, 130, 317-325. https://doi.org/10.1016/j.psep.2019.08.025
Ebrahimi, I., Gashti, M. P., Sarafpour, M. (2018). Photocatalytic discoloration of denim using advanced oxidation process with H2O2/UV. Journal of Photochemistry and Photobiology A: Chemistry, 360, 278-288. https://doi.org/10.1016/j.jphotochem.2018.04.053
El-Alami, W., Sousa, D. G., Rodríguez, C.F., Díaz, O. G., Rodríguez, J.M.D., El Azzouzi, M., Araña, J. (2017). Efect of TiF surface interaction on the photocatalytic degradation of phenol, aniline and formic acid. Journal of Photochemistry and Photobiology A: Chemistry, 348, 139-149. https://doi.org/10.1016/j.jphotochem.2017.08.010
Esplugas, S., Yue, P. L., Pervez, M. I. (1994). Degradation of 4-chlorophenol by photolytic oxidation. Water Research, 28(6), 1323-1328. https://doi.org/10.1016/0043-1354(94)90297-6
Ferreira, E. S. B., Ferreira, R. S. B., Luna, C. B. B., Araújo, E. M., Lira, H. L. (2021). Hollow fiber membranes of several materials and their applications. Research, Society and Development, 10 (1), e55910111206. http://dx.doi.org/10.33448/rsd-v10i1.11206
Figoli, A., Marino, T., Simone. S., Di Nicolo, E., Li, X. M., He, T., Tornaghi, S., Drioli, E. (2014). Towards nontoxic solvents for membrane preparation: a review. Green Chemistry, 16, 4034-4059. https://pubs.rsc.org/en/content/articlelanding/2014/gc/c4gc00613e#!divAbstract
Figoli, A., Simone, S., Drioli, E. Polymeric Membranes. In: Hilal, N., Ismail, A. F., Wright, C. J. (Orgs.) (2015). Membrane Fabrication. Boca Raton: CRC Press, 3-44. ISBN: 1482210460
Fioreze, M., Dos Santos, E. P., Schmachtenberg, N. (2014). Processos oxidativos avançados: fundamentos e aplicação ambiental. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, 18 (1), 79-91. http://dx.doi.org/10.5902/2236117010662
Gohil, J. M., Choudhury, R. R. (2019). Introduction to Nanostructured and Nano-enhanced Polymeric Membranes: Preparation, Function, and Application for Water Purification. Nanoscale Materials in Water Purification, 2, 25-57. https://doi.org/10.1016/B978-0-12-813926-4.00038-0
Guerra, M. M. H., Alberola, I. O., Rodriguez, S. M., López, A. A., Merino, A. A., Lopera, A. E., Alonso, J. M. Q. (2019). Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. Water Research, 156, 232-240. https://doi.org/10.1016/j.watres.2019.02.055
Habert, A. C., Borges, C. P., Nóbrega, R. (2006). Processo de Separação com Membranas. 1a ed. E-papers Serviços Editoriais Ltda. ISBN: 857650085X
Hamandi, M., Berhault, G., Kochkar, H. (2017). Influence of reduced graphene oxide on the synergism between rutileand anatase TiO2 particles in photocatalytic degradation of formic acid. Molecular Catalysis, 432, 125-130. https://doi.org/10.1016/j.mcat.2017.01.003
Hérissan, A., Meichtry, J. M., Remita, H., Colbeau-Justin, C., Litter, M. I. (2017). Reduction of nitrate by heterogeneous photocatalysis over pure and radiolytically modified TiO2 samples in the presence of formic acid. Catalysis Today, 281, 101-108. https://doi.org/10.1016/j.cattod.2016.05.044
Huang, W., Bianco, A., Brigante, M., Mailhot, G. (2018). UVA-UVB activation of hydrogen peroxide and persulfate for advanced oxidation processes: Efficiency, mechanism and effect of various water constituents. Journal of Hazardous Materials, 347, 279-287. https://doi.org/10.1016/j.jhazmat.2018.01.006
Kwon, S., Lin, T. C., Iglesia, E. (2020). Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces. Journal of Catalysis, 383, 60-76. https://doi.org/10.1016/j.jcat.2019.12.043
Lima, C. A. P.; Araujo, B. A.; Silva, K. S.; Silva, C. B.; Lima, G. G. C.; Vieira, F. F.; Medeiros, K. M. (2020). Advanced oxidative process by heterogeneous photocatalysis for chemical laboratories effluents treatment. Desalination and Water Treatment, 174, 248-257. https://doi:10.5004/dwt.2020.24894
Loh, C. H., Wu, B., Ge, L., Pan, C., Wang, R. (2018). High-strength N-methyl-2-pyrrolidone-containing process wastewater treatment using sequencing batch reactor and membrane bioreactor: A feasibility study. Chemosphere, 194, 534-542. https://doi.org/10.1016/j.chemosphere.2017.12.013
M’bra, I. C., García-Muños, P., Drogui, P., Keller, N. Trokourey, A. Robert, D. (2019). Heterogeneous photodegradation of Pyrimethanil and its commercial formulation with TiO2 immobilized on SiC foams. Journal of Photochemistry and Photobiology A: Chemistry, 368, 1-6. https://doi.org/10.1016/j.jphotochem.2018.09.007
Ma, T., Garg, S., Miller, C. J., Waite, T. D. (2015). Contaminant degradation by irradiated semiconducting silver chloride particles: Kinetics and modelling. Journal of Colloid and Interface Science, 446, 366-372. https://doi.org/10.1016/j.jcis.2014.11.069
Mariani, M. L., Brandi, R. J., Cassano, A. E., Zalazar, C. S. (2013). A kinetic model for the degradation of dichloroacetic acid and formic acid in water employing the H2O2/UV process. Chemical Engineering Journal, 225, 423-432. https://doi.org/10.1016/j.cej.2013.03.098
Mena, E., Rey, A., Beltrán, F. J. (2018). TiO2 photocatalytic oxidation of a mixture of emerging contaminants: A kinetic study independent of radiation absorption based on the direct-indirect model. Chemical Engineering Journal, 339, 369-380. https://doi.org/10.1016/j.cej.2018.01.122
Miller, K. L., Lee, C. W., Falconer, J. L., Medlin, J. W. (2010). Effect of water on formic acid photocatalytic decomposition on TiO2 and Pt/TiO2. Journal of Catalysis, 275 294-299. https://doi.org/10.1016/j.jcat.2010.08.011
Mrowetz, M., Selli, E. (2006). Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO2 and ZnO water suspension. Journal of Photochemistry and Photobiology A: Chemistry, 180, 15-22. https://doi.org/10.1016/j.jphotochem.2005.09.009
Negishi, N., Sugasawa, M., Miyazaki, Y., Hirami, Y., Koura, S. (2019). Effect of dissolved silica on photocatalytic water purification with a TiO2 ceramic catalyst. Water Research, 150, 40-46. https://doi.org/10.1016/j.watres.2018.11.047
Pan, Z., Song, C., Li, L., Wang, H., Pan, Y., Wang, Y., Feng, X. (2019). Membrane technology coupled with electrochemical oxidation processes for organic wastewater treatment: recente advances and future prospects. Chemical Engineering Journal, 1-19. https://doi.org/10.1016/j.cej.2019.01.188
Parrino, F., Camera-Roda, G., Loddo, V., Palmisano, G., Augugliaro, V. (2014). Combination of ozonation and photocatalysis for purification of aqueous effluents containing formic acid as probe pollutant and bromide ion. Water Research, 50, 189-199. https://doi.org/10.1016/j.watres.2013.12.001
Pascoal, S. A., Silva, C. B., Da Silva, K. S., De Lima, G. G. C., De Medeiros, K. M., De Lima, C. A. P. (2020). Treatment by TiO2/UV of wastewater generated in polymeric membranes production. Desalination and Water Treatment, 207, 30-32. https://doi.org/10.5004/dwt.2020.26390
Rauf, M. A., Meetani, M., Khaleel, A., Ahmed, A. (2015). Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chemical Engineering Journal, 157 (2-3), 373-378. https://doi.org/10.1016/j.cej.2009.11.017
Razali, M., Kim, J. F., Attfield, M., Budd, P. M., Drioli, E., Lee, Y. M., Szekely, G. (2015). Sustainable wastewater treatment and recycling in membrane manufacturing. Green Chemistry, 17, 5196-5205. http://www.rsc.org/suppdata/c5/gc/c5gc01937k/c5gc01937k1.pdf
Ribeiro, J. P., Abdala Neto, E. F., Parente, T. C., Nascimento, R. F., Barros, A. L., Oliveira, A. G., Barros, F. C. F. Princípios Básicos. (2017). Processos Oxidativos Avançados: Fundamentos e Aplicações em Matrizes Ambientais. Imprensa Universitária, 11-40. http://www.repositorio.ufc.br/handle/riufc/32127
Riboni, F., Dozzi, M. V., Paganini, M. C., Giamello, E., Selli, E. (2017). Photocatalytic activity of TiO2-WO3 mixed oxides in formic acid oxidation. Catalysis Today, 287, 176-181. https://doi.org/10.1016/j.cattod.2016.12.031
Sadi, A. B., Bilali, R. K. A., Abubshait, S. A., Kochkar, H. (2020). Low temperature design of titanium dioxide anatase materials decorated with cyanuric acid for formic acid photodegradation. Journal of Saudi Chemical Society, 24, 351-363. https://doi.org/10.1016/j.jscs.2020.01.009
Sang, W., Cui, J., Mei, L., Zhang, Q., Li, Y., Li, D., Zhang, W., Li, Z. (2019). Degradation of liquid phase N, N-dimethylformamide by dielectric barrier discharge plasma: Mechanism and degradation pathways. Chemosphere, 236, 124401. https://doi.org/10.1016/j.chemosphere.2019.124401
Silva, A. F. P. S., Araújo, E. M., Lira, H. L., Ferreira, R. S. B., Medeiros, V. N., Oliveira, S. S. L. (2021). Synthesis of polysulfone/alumina hollow fiber membranes for water treatment in the presence of indigo blue dye. Research, Society and Development, v. 10, n. 1, e18610110863. http://dx.doi.org/10.33448/rsd-v10i1.10863
Silva, M. B. R., Azevedo, P. V., Alves, T. L. B. (2014). Análise da degradação ambiental do alto curso da bacia hidrográfica do rio Paraíba. Boletim Goiano de Geografia (Online), 34 (1), 35-53. https://doi.org/10.5216/bgg.v34i1.29314
Turki, A., Guillard, C., Dappozze, F., Berhault, G., Ksibi, Z., Kochkar, H. (2014). Design of TiO2 nanomaterials for the photodegradation of formic acid – Adsorption isotherms and kinetics study. Journal of Photochemistry and Photobiology A: Chemistry, 279, 8-16. https://doi.org/10.1016/j.jphotochem.2014.01.008
Ulliman, S. L., Mckay, G., Rosario-Ortiz, F. L., Linden, K. G. (2018). Low levels of iron enhance UV/H2O2 efficiency at neutral pH. Water Research, 130, 234-242. https://doi.org/10.1016/j.watres.2017.11.041
Vieira, S. M. M., Costa, T. B., Naves, F. L. (2018). Utilização de processo oxidativo avançado (fotofenton) no tratamento de efluente à base de gasolina comercial. The Journal of Engineering and Exact Sciences – JCEC, 4 (1). https://doi.org/10.18540/jcecvl4iss1pp0014-0018
Wan, L., Sheng, J., Chen, H., Xu, Y. (2013). Different recycle behavior of Cu2+ and Fe3+ ions for phenol photodegradation over TiO2 and WO3. Journal of Hazardous Materials, 262, 114-120. https://doi.org/10.1016/j.jhazmat.2013.08.002
Wang, H. H., Jung, J. T., Kim, J. F., Kim, S., Drioli, E., Lee, Y. M. (2019). A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation. Journal of Membrane Science, 574, 44-54. https://doi.org/10.1016/j.memsci.2018.12.051
Wang, S., Shiraishi, F., Nakano, K. (2002). A synergistic effect of photocatalysis and ozonation on decomposition of formic acid in an aqueous solution. Chemical Engineering Journal, 87 (2), 261-271. https://doi.org/10.1016/S1385-8947(02)00016-5
Zolfaghari, A., Mortaheb, H. R., Meshkini, F. (2011). Removal of N-methyl-2-pyrrolidone by photocatalytic degradation in a batch reactor. Industrial & Engineering Chemistry Research, 50 (16), 9569-9576. https://doi.org/10.1021/ie200702b
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Bruna Aline Araújo; José Everton Soares de Souza; Kênia Kelly Freitas Sarmento; Larissa Dias Rebouças; Keila Machado de Medeiros; Carlos Antônio Pereira de Lima
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores que publican en esta revista concuerdan con los siguientes términos:
1) Los autores mantienen los derechos de autor y conceden a la revista el derecho de primera publicación, con el trabajo simultáneamente licenciado bajo la Licencia Creative Commons Attribution que permite el compartir el trabajo con reconocimiento de la autoría y publicación inicial en esta revista.
2) Los autores tienen autorización para asumir contratos adicionales por separado, para distribución no exclusiva de la versión del trabajo publicada en esta revista (por ejemplo, publicar en repositorio institucional o como capítulo de libro), con reconocimiento de autoría y publicación inicial en esta revista.
3) Los autores tienen permiso y son estimulados a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) a cualquier punto antes o durante el proceso editorial, ya que esto puede generar cambios productivos, así como aumentar el impacto y la cita del trabajo publicado.