Citotoxicidad en fibroblastos de donantes jóvenes y ancianos de dos enjuagues bucales utilizados para prevenir la propagación del SARS-CoV-2

Autores/as

DOI:

https://doi.org/10.33448/rsd-v10i4.14587

Palabras clave:

Odontología; Pruebas de toxicidad; Fibroblastos; Antisépticos bucales; Coronavirus.

Resumen

El enjuague bucal puede contactar con el tejido conectivo gingival subyacente en los tejidos lesionados y debe evaluarse su citotoxicidad. No hay evidencia disponible si las células de donantes de edad avanzada reaccionan de manera diferente durante las evaluaciones de enjuague bucal in vitro. Este estudio objetivó comparar la evaluación de la citotoxicidad de dos tipos de enjuagues bucales evaluados con fibroblastos gingivales primarios de donantes jóvenes y ancianos. Se recolectaron células primarias de dos participantes ancianos (edad media 66,5 años) y dos jóvenes (edad media 27,5 años). El cultivo de células primarias se produjo a partir de fragmentos gingivales y se expuso durante 24 horas en Perioxidin® y Oral B®. Un grupo de control negativo fue expuesto a medios de cultivo no acondicionados, lo que representa un 100% de supervivencia celular, y se utilizó una solución de 200 mg/mL de fragmentos de látex como control positivo debido a su toxicidad. Ambos productos mostraron una citotoxicidad dependiente de la dosis similar. En el rango tóxico, 0.035% a 0.00035% para Perioxidin® y 0.06 a 0.0006% para Oral B®. Los valores de CI50 calculados fueron muy similares, a excepción del Oral B® en células jóvenes, que presentó una concentración tóxica ligeramente superior (0,0523mM). No hubo diferencia estadísticamente significativa entre las pruebas con células de jóvenes o ancianos (p> 0,05). Se concluyó que el uso de células de la misma edad durante las pruebas in vitro puede no ser necesario para predecir diferencias en la respuesta biológica de los ancianos a estos productos.

Biografía del autor/a

Sandro J. de Oliveira Tavares, Universidade Federal Fluminense

Programa de Posgrado en Odontología de la Universidad Federal Fluminense (UFF), Niteroi, RJ, Brasil;

Isleine Portal Caldas, Universidade Federal Fluminense

Departamento de Odontología Geriátrica, Facultad de Odontología de la Universidad Federal Fluminense (UFF), Niterói, RJ, Brasil

Fabiano Palmeira Gonçalves, Universidade Federal Fluminense

Programa de Postgrado en Odontología de la Universidad Federal Fluminense (UFF), Niteroi, RJ, Brasil

Pantaleo Scelza, Universidade Federal Fluminense

Departamento de Odontología Geriátrica, Facultad de Odontología de la Universidad Federal Fluminense (UFF), Niterói, RJ, Brasil

Felipe Oliveira, Universidade Federal Fluminense

Laboratorio Experimental de Cultivo Celular (LECCel), Facultad de Odontología, Universidad Federal Fluminense (UFF), Niteroi, RJ, Brasil

Gutemberg Alves, Universidade Federal Fluminense

Departamento de Biología Molecular y Celular, Instituto de Biología, Universidad Federal Fluminense (UFF), Niteroi, RJ, Brasil

Miriam F. Zaccaro Scelza, Universidade Federal Fluminense

Profesor Titular, Departamentos de Endodoncía y Odontología Geriátrica, Laboratorio Experimental de Cultivo Celular (LECCel), Facultad de Odontología, Universidade Federal Fluminense (UFF), Niteroi, RJ, Brasil

Citas

American Dental Association. (2020). Summary of ADA guidance during the COVID-19 crisis. Ada, 19–20. https://www.ada.org/en/press-room/news-releases/2020-archives/april/summary-of-ada-guidance-during-the-covid-19-crisis?utm_source=mouthhealthy&utm_medium=covid-19-mh&utm_content=cv-gov—interim-statement&utm_campaign=covid-19

Ather, A., Patel, B., Ruparel, N. B., Diogenes, A., & Hargreaves, K. M. (2020). Coronavirus Disease 19 (COVID-19): Implications for Clinical Dental Care. Journal of Endodontics, 46(5), 584–595. https://doi.org/10.1016/j.joen.2020.03.008

Balloni, S., Locci, P., Lumare, A., & Marinucci, L. (2016). Cytotoxicity of three commercial mouthrinses on extracellular matrix metabolism and human gingival cell behaviour. Toxicology in Vitro, 34, 88–96. https://doi.org/10.1016/j.tiv.2016.03.015

Borenfreund, E., & Puerner, J. A. (1985). Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicology Letters, 24(2–3), 119–124. https://doi.org/10.1016/0378-4274(85)90046-3

Calderón-Montaño, J. M., Jiménez-Alonso, J. J., Guillén-Mancina, E., Burgos-Morón, E., & López-Lázaro, M. (2018). A 30-s exposure to ethanol 20% is cytotoxic to human keratinocytes: possible mechanistic link between alcohol-containing mouthwashes and oral cancer. Clinical Oral Investigations, 22(8), 2943–2946. https://doi.org/10.1007/s00784-018-2602-z

Carrouel, F., Conte, M. P., Fisher, J., Gonçalves, L. S., Dussart, C., Llodra, J. C., & Bourgeois, D. (2020). COVID-19: A Recommendation to Examine the Effect of Mouthrinses with β-Cyclodextrin Combined with Citrox in Preventing Infection and Progression. Journal of Clinical Medicine, 9(4), 1126. https://doi.org/10.3390/jcm9041126

China, N. H. C. of the P. R. of. (2020). Diagnosis and treatment scheme for COVID-19 (5th edition). http://www.nhc.gov.cn/yzygj/s7653p/2020 02/3b09b894ac9b4204a79db5b8912d4440.shtml

Coelho, A. S., Laranjo, M., Gonçalves, A. C., Paula, A., Paulo, S., Abrantes, A. M., Caramelo, F., Ferreira, M. M., Silva, M. J., Carrilho, E., & Botelho, M. F. (2020). Cytotoxic effects of a chlorhexidine mouthwash and of an enzymatic mouthwash on human gingival fibroblasts. Odontology, 108(2), 260–270. https://doi.org/10.1007/s10266-019-00465-z

Czekanska, E. M., Stoddart, M. J., Ralphs, J. R., Richards, R. G., & Hayes, J. S. (2014). A phenotypic comparison of osteoblast cell lines versus human primary osteoblasts for biomaterials testing. Journal of Biomedical Materials Research - Part A, 102(8), 2636–2643. https://doi.org/10.1002/jbm.a.34937

Czekanska, E. M., Stoddart, M. J., Richards, R. G., & Hayes, J. S. (2012). In search of an osteoblast cell model for in vitro research. European Cells and Materials, 24, 1–17. https://doi.org/10.22203/eCM.v024a01

Damante, C. A., De Micheli, G., Miyagi, S. P. H., Feist, I. S., & Marques, M. M. (2009). Effect of laser phototherapy on the release of fibroblast growth factors by human gingival fibroblasts. Lasers in Medical Science, 24(6), 885–891. https://doi.org/10.1007/s10103-008-0582-y

De Oliveira, J. R., Belato, K. K., De Oliveira, F. E., Jorge, A. O. C., Camargo, S. E. A., & De Oliveira, L. D. (2018). Mouthwashes: An in vitro study of their action on microbial biofilms and cytotoxicity to gingival fibroblasts. General Dentistry, 66(2), 28–34.

Fallahi, H. R., Keyhan, S. O., Zandian, D., Kim, S.-G., & Cheshmi, B. (2020). Being a front-line dentist during the Covid-19 pandemic: a literature review. Maxillofacial Plastic and Reconstructive Surgery, 42(1), 12. https://doi.org/10.1186/s40902-020-00256-5

Ferreira, L. M., Hochman, B., & Barbosa, M. V. J. (2005). Modelos experimentais em pesquisa. Acta Cirurgica Brasileira, 20(2), 28–34. https://doi.org/10.1590/S0102-86502005000800008

Flemingson, Emmadi Pamela, Ambalavanan N, Ramakrishnan T, V. R. (2008). Effect of three commercial mouth rinses on epithelial cells: An in vitro study. Indian J Dent Res, 19(1), 29–35. http://search-ebscohost-com.ez24.periodicos.capes.gov.br/login.aspx?direct=true&db=ddh&AN=29405548&lang=pt-br&site=ehost-live

Fransson, C., Mooney, J., Kinane, D. F., & Berglundh, T. (1999). Differences in the inflammatory response in young and old human subjects during the course of experimental gingivitis. Journal of Clinical Periodontology, 26(7), 453–460. https://doi.org/10.1034/j.1600-051X.1999.260707.x

Ghabanchi, J., Moattari, A., Tadbir, A. A., Mardani, M., & Shakib, M. (2012). Effect of three commercial mouth rinses on epithelial cells: An in vitro study. Australian Journal of Basic and Applied Sciences, 6(7), 318–320.

ISO 10993-5:2009. (2009). Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. https://doi.org/10.3109/00207459208994776

Kanasi, E., Ayilavarapu, S., & Jones, J. (2016). The aging population: demographics and the biology of aging. Periodontology 2000, 72(1), 13–18. https://doi.org/10.1111/prd.12126

Lourenço, E. S., Côrtes, J., Costa, J., Linhares, A., & Alves, G. (2014). Evaluation of Commercial Latex as a Positive Control for In Vitro Testing of Bioceramics. Key Engineering Materials, 631, 357–362. https://doi.org/10.4028/www.scientific.net/KEM.631.357

Mah, W., Jiang, G., Olver, D., Cheung, G., Kim, B., Larjava, H., & Häkkinen, L. (2014). Human gingival fibroblasts display a non-fibrotic phenotype distinct from skin fibroblasts in three-dimensional cultures. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0090715

Mannerström, M., Toimela, T., Sarkanen, J. R., & Heinonen, T. (2017). Human BJ Fibroblasts is an Alternative to Mouse BALB/c 3T3 Cells in In Vitro Neutral Red Uptake Assay. Basic and Clinical Pharmacology and Toxicology, 121, 109–115. https://doi.org/10.1111/bcpt.12790

Müller, H.-D., Eick, S., Moritz, A., Lussi, A., & Gruber, R. (2017). Cytotoxicity and Antimicrobial Activity of Oral Rinses In Vitro. BioMed Research International, 2017, 1–9. https://doi.org/10.1155/2017/4019723

OECD. (2010). Test Guideline No. 129: Guidance document on using cytotoxicity test to estimate starting doses for acute oral systemic toxicity tests. OECD Guidelines for the Testing Chemicals, July(129), 1–54.

Peng, X., Xu, X., Li, Y., Cheng, L., Zhou, X., & Ren, B. (2020). Transmission routes of 2019-nCoV and controls in dental practice. International Journal of Oral Science, 12(1), 1–6. https://doi.org/10.1038/s41368-020-0075-9

Saad, S., Greenman, J., & Shaw, H. (2011). Comparative effects of various commercially available mouthrinse formulations on oral malodour. Oral Diseases, 17(2), 180–186. https://doi.org/10.1111/j.1601-0825.2010.01714.x

Salminen, A., Ojala, J., Kaarniranta, K., & Kauppinen, A. (2012). Mitochondrial dysfunction and oxidative stress activate inflammasomes: Impact on the aging process and age-related diseases. Cellular and Molecular Life Sciences, 69(18), 2999–3013. https://doi.org/10.1007/s00018-012-0962-0

Scheibler, E., Garcia, M. C. R., Medina da Silva, R., Figueiredo, M. A., Salum, F. G., & Cherubini, K. (2017). Use of nystatin and chlorhexidine in oral medicine: Properties, indications and pitfalls with focus on geriatric patients. Gerodontology, 34(3), 291–298. https://doi.org/10.1111/ger.12278

Soares, A. S. L. S., Scelza, M. Z., Spoladore, J., Gallito, M. A., Oliveira, F., Moraes, R. de C. M., & Alves, G. G. (2018). Comparison of primary human gingival fibroblasts from an older and a young donor on the evaluation of cytotoxicity of denture adhesives. Journal of Applied Oral Science, 26, 1–10. https://doi.org/10.1590/1678-7757-2016-0594

Standardization, I. O. for. (2008). ISO 7405:2008 Dentistry - Evaluation of biocompatibility of medical devices used in dentistry. http://www.en-standard.eu/iso-7405-dentistry-evaluation-of-biocompatibility-of-medical-devices-used-in-dentistry/

Vergara-Buenaventura, A., & Castro-Ruiz, C. (2020). Use of mouthwashes against COVID-19 in dentistry. British Journal of Oral and Maxillofacial Surgery, 58(8), 924–927. https://doi.org/10.1016/j.bjoms.2020.08.016

Walston, J., Hadley, E. C., Ferrucci, L., Guralnik, J. M., Newman, A. B., Studenski, S. A., Ershler, W. B., Harris, T., & Fried, L. P. (2006). Research agenda for frailty in older adults: Toward a better understanding of physiology and etiology: Summary from the American Geriatrics Society/National Institute on Aging research conference on frailty in older adults. Journal of the American Geriatrics Society, 54(6), 991–1001. https://doi.org/10.1111/j.1532-5415.2006.00745.x

Yoon, J. G., Yoon, J., Song, J. Y., Yoon, S.-Y., Lim, C. S., Seong, H., Noh, J. Y., Cheong, H. J., & Kim, W. J. (2020). Clinical Significance of a High SARS-CoV-2 Viral Load in the Saliva. Journal of Korean Medical Science, 35(20), 1–6. https://doi.org/10.3346/jkms.2020.35.e195

Descargas

Publicado

23/04/2021

Cómo citar

TAVARES, S. J. de O. .; CALDAS, I. P. .; GONÇALVES, F. P. .; SCELZA, P.; OLIVEIRA, F.; ALVES, G.; SCELZA, M. F. Z. Citotoxicidad en fibroblastos de donantes jóvenes y ancianos de dos enjuagues bucales utilizados para prevenir la propagación del SARS-CoV-2. Research, Society and Development, [S. l.], v. 10, n. 4, p. e56810414587, 2021. DOI: 10.33448/rsd-v10i4.14587. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/14587. Acesso em: 21 nov. 2024.

Número

Sección

Ciencias de la salud